
Safety-Critical Java
for

Low-End Embedded Platforms

Stephan E. Korsholm & Hans Søndergaard
VIA University College, Horsens, DK

Anders P. Ravn
CISS, Aalborg University, DK

JTRES October 2012 1

The Problem

• Low-End Industrial Platforms
– KT4585 from Polycom

– ATMega2560 from AVR

– NEC-V850 e.g. used by Grundfos

– Typical memory resources

 16 kB RAM, 256 kB ROM

• Safety-Critical Java impl. using RTSJ
– Based on Java RTS (SUN)

– Recommended Requirements

 CPU system with 512 MB
 Real-Time OS: Linux

2

Plan to Solve the Problem

3

Reduce each layer of the architecture

Operating System

4

SCJ
RTSJ
JDK
VM
OS

No Operating System
Instead:
Hardware Objects for device control
1st level interrupt handling in Java space
Minimal native layer for context switch

between tasks

VM:
Hardware near Virtual Machine (HVM)

5

SCJ
RTSJ
JDK
VM
OS

• Lean
– Java-to-C compiler with embedded interpreter
– Program specialization

– Classes & methods
– Bytecode selection

• No dependencies on external libraries
• Portable

– Strict ANSI-C

– All usual C compilers can be used

– Simple build procedure

JDK

6

SCJ
RTSJ
JDK
VM
OS

• No special JDK required
– Uses Java 1.6 (Other JDKs supported as well)
– Reduced through program specialization

• Dependency leaks
– System.out.println leaks, but
– Collection classes (e.g. ArrayList) do not

SCJ

7

SCJ

JDK
VM
OS

• A bare metal implementation
– No RTSJ
– The VM interface

Scoped Memory

8

size

base

free

Backing
store

Scoped
Memory:

Scoped Memory

9

size

base

free

Backing
store

Scoped
Memory
:

public class AllocationArea {
protected int base; unsigned char* HVMbase;
protected int size; uint32 HVMfree;
protected int free; uint32 HVMsize;

@IcecapCVar
private static int HVMbase;
@IcecapCVar
private static int HVMfree;
@IcecapCVar
private static int HVMsize;

@IcecapCompileMe
public static void switchAllocationArea(AllocationArea newScope,

AllocationArea oldScope) {
oldScope.base = HVMbase;
oldScope.free = HVMfree;
oldScope.size = HVMsize;

HVMbase = newScope.base;
HVMfree = newScope.free;
HVMsize = newScope.size;

}
...

}

Java: C:

Scheduling

10

• Context switch through the layers
C C - Assembler Java Java

Real-Time Clock

11

• Platform specific
– E.g. KT4585,

– ATMega2560
 Hardware clock

– Configured using Hardware Objects
– Tick interrupt handled in Java

@IcecapCVar
private static int systemTick;

Evaluation

12

• SCJ Level 1:
1 Mission, 3 Handlers, KT4585

– ROM: 35 kB
– RAM: 10 kB

Evaluation

13

• MiniCDj, ATMega2560
– ROM

– RAM, more than 300 kB

Related JVMs

14

• JamaicaVM
 Hard real-time execution guarantees

 Real-time GC

 SCJ on top of RTSJ

 High-end embedded platforms

• FijiVM
 Efficient Java-to-C compiler

 Real-time GC

 SCJ Level 0 with native function layer

 High-end embedded platforms

• KESO VM
 Lean VM. Efficient Java-to-C compiler

 GC support

 HVM SCJ ported to KESO ?

 Low-end embedded platforms

Conclusion

15

A SCJ Level 0 + 1 implementation for
low-end platforms by means of:

– A bare metal implementation of SCJ using a VMInterface
– No special JDK required
– A lean and portable HVM, no library dependencies
– Hardware near features like Hardware Objects

Typical memory resources
16 kB RAM, 256 kB ROM

SCJ

JDK
HVM
OS

Are we happy now?

• Ensure SCJ compatibility
• Development environment
• Improve Java SCJ infrastructure
• Learn efficient compilation from Fiji

