
Department of Computer Science, Aalborg University {andrease,rrh}@cs.aau.dk
Informatics and Mathematical Modeling Technical University of Denmark masca@imm.dtu.dk

Private Memory Allocation Analysis for
Safety-Critical Java

Andreas E. Dalsgaard
René R. Hansen
Martin Schöberl

Introduction to CJ4ES
● CJ4ES

– Target Safety Critical Java (SCJ)

– JOP

● SCJ
– Predictability

– No garbage collection

– Scoped memory

– Large API
● RTSJ

SCJ - Execution Model
● Immortal Memory

● Missions

– EventHandlers
● Private Memory

● Nested PM

Example of SCJ Application

SCJ - Memory Model
● References from outer scope to objects in an inner scope is

not permitted

● References between scope stacks is not permitted

Related Work on SCJ
● SCJ-Checker

– Use annotations as a type system

– Implemented using the Checker Framework

– Works well for all levels

● Problems with annotations
– Programmers have to write them

– Class duplication

Current Solution Problem

Current Solution

● 14 rules need to be checked for memory assignments

Strategy
● Analyse on bytecode level

– Precision over analysis run-time

– Aid in verification process
● Provide immediate feedback to developers

● Application + SCJ implementation library
– Stubs

– JOP SCJ
● Extended JOP

– Illegal assignments in SCJ implementation

Analysis
● Perform a context sensitive pointer analysis

– Build call graph – Dynamic dispatch

– Stack of scopes used as context
● Identify when contexts should change

– Distinguish instances based on allocation site

● Perform check of result of pointer analysis
– Compare scope stack of pointer and instance

– Scope stack of instance ≤ scope stack of pointer

Identify Context/Scope Change
● Inferred from call graph

– StartMission – SCJ library specific

– handleAsyncEvent

– enterPrivateMemory

Applying the Analysis

Call Graph of InOutParameter

(ImmortalMemory, IM) (ImmortalMemory, IM) : (InOutP/InOutParameter, MISSION)

Identify Context/Scope Change(2)

● Memory reference to scopes
– GetCurrentManagedMemory

– GetMemoryArea

– executeInArea

Identify Context/Scope Change(2)

Implementation
● Use T. J. Watson Libraries for Analysis (WALA)

– Provide static analysis of bytecode

– Support customising context changes

– Support separating application and run-time-library

● Took more time than expected

Tracking Context Change with WALA
● Context changes inferred from call graph
● Result of heap graph analysis unavailable from

customised context selector
● Observation
● Remember last leaked memory reference

– getCurrentManagedMemory

– getMemoryArea

Overview
● Build call-graph of SCJ app. and JOP SCJ impl.

– Identify context changes

● Annotate call graph nodes with contexts
● Build Basic HeapGraph

– PointerKeys and InstanceKeys get contexts

● Compare scope stacks of PointerKeys and
InstanceKeys

Experiments
● Lines of code(LOC)
● Bytecode size in byte SCJ library/SCJ application

● False positive in scjreprap
– Due to implementation details of JOP SCJ

● False positive in InOutParameter
– Clever reuse of space in a StringBuilder

Test case LOC Bytecode Illegal Assignments Reported
scjminepump 1465 239884/18519 0 0
scjminepumplog 1490 239884/20511 1 1
pmFFTcpResult 545 247854/11577 0 0
InOutParameter 155 264949/6285 1 2
scjreprap 1758 242561/27730 4 5

False positive in scjreprap - getSequencer()

Example: Clever Reuse of StringBuilder

Experiences using WALA
● Can analyse real Java programs/bytecode

● Many different analyses

● Hard to get an overview
– To use it – read the code

– Lot of subclassing

● Performance optimisations
– Makes debugging difficult

● No documentation of what is ensured by analyses

Conclusion
● SCJ illegal assignment analysis tool
● More benchmarks

– Real world examples

● Formalisation of the analysis
● More analyses tools of SCJ applications

● Links:
– http://www.soc.tuwien.ac.at/jop.git

– https://github.com/andreasDalsgaard/privmem

http://www.soc.tuwien.ac.at/jop.git
https://github.com/andreasDalsgaard/privmem

Questions?

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24

