
Revisiting the “Perc Real-Time API”

1© 2011 Atego. All Rights Reserved.© 2011 Atego. All Rights Reserved.

Revisiting the Perc Real Time API
Kelvin Nilsen, Chief Technology Officer Java, Atego Systems

The extended history of real-time Java

Two research papers published in late 1995 and early 1996
represent the original birth of real-time Java

Market response to these papers was overwhelmingly positive

Nearly 900 copies of the draft real-time Java API were downloaded in
the 8 months following first publication in January 1996

Multiple RTOS vendors were “hearing from their customers” that they
wanted this technology; I received multiple invitations to leave academiawanted this technology; I received multiple invitations to leave academia

Enthusiastic response motivated NIST to host “standardization”
meetings on real-time Java

Got attention of Sun Microsystems, who did not want outsiders to be
“defining” Java.
− Their response was formation of the Java Community Process and formation of

2© 2011 Atego. All Rights Reserved.

Their response was formation of the Java Community Process and formation of
the JSR-1 expert group

Where are we today?

Over ten years after the RTSJ became an official standard, real-time
Java as defined by RTSJ is still primarily a “research topic”

Very difficult to find commercial deployments

There is talk of a few defense system deployments, but very limited “real
data” on how well RTSJ has worked in these deploymentsdata on how well RTSJ has worked in these deployments

Plenty of opportunity for research projects

Meanwhile, about six months ago, a well-known commercialMeanwhile, about six months ago, a well known commercial
avionics and defense technology supplier contacted Atego to
request access to the original Perc API (as described in the paper
first published in 1996)first published in 1996)

Would a different real-time Java “standard” have yielded different
outcomes?

3© 2011 Atego. All Rights Reserved.

Is it still possible to correct the course of real-time Java?

Before there was “Real-Time Java”, there was real-time Java

Origins

1980’s: earned way through graduate school setting up 8-bit computers, soldering
RS-232 cables, writing a hard disk device driver, and authoring the VersaCom
interrupt-driven IBM PC telecommunications program

Univ. of Arizona Computer Science convert from Physics undergraduate degree
− Graduate programming language coursework placed strong emphasis on language design

and programming language expressiveness
− Gained strong appreciation for expressive power of programming languages
− SR (Synchronizing Resources) language design with Greg Andrews(y g) g g g g
− Icon (successor to SNOBOL4) language design with Ralph Griswold
− Ph.D. topic: concurrent real-time version of Icon called “Conicon”, including my early work

on real-time garbage collection (1985-88).

Subsequent NSF funded research on real time garbage collection for C++Subsequent NSF-funded research on real-time garbage collection for C++
− I had a solution looking for a problem
− But real-time programmers kept telling me they didn’t “need” garbage collection, …
− and they were right

4© 2011 Atego. All Rights Reserved.

Transitioned work to Java beginning in late 1995
− Backing from angel investor, DARPA, venture capitalists

Considerations in Design of Original PERC Real-Time API

Target domain must be much broader than traditionalist “real-time”

Think “Star Wars”, the movie,

Must address shortcomings of then-current “real-time practice”:

Non-portable: real-time code is generally targeted, debugged, analyzed,
tailored for a specific platform, assumptions are rarely documented

Non-scalable: every real-time programmer has to worry about what
every other real-time programmer is doing (because of contention for y p g g (
CPU time, memory, network bandwidth, synchronized resources)

Non-modular: real-time programs are “monolithic”; there are no
independent components every part is aware of and dependent onindependent components, every part is aware of and dependent on
every other part

Impractical: though scheduling theory is solid, analysis of execution
times is o erl conser ati e (b 100) especiall on modern processors

5© 2011 Atego. All Rights Reserved.

times is overly conservative (by 100x), especially on modern processors,
and interesting real-time workloads are not always predictable

Context: Moore’s Law of Software Growth

16M

1M

4M

16M

Code size doubles
18 th

64K

256K
every 18 months

0K

4K

16K
Deployments Projections

0K
2005200019951990

Source: Philips Semiconductor data for high end television receiver

6© 2011 Atego. All Rights Reserved.

Source: Philips Semiconductor data for high-end television receiver

Context: Moore’s Law of Software Growth

16M
R l

1M

4M

16M

Code size doubles
18 th

Relevance:
1. As application sizes grow, it is no longer practical

to implement from scratch all new software for
each new product configuration

64K

256K
every 18 monthseach new product configuration.

2. As ROM sizes grow, so do processor capabilities.
More modern microcontrollers are often end-of-
lifed 5-10 years after they are first commercially

0K

4K

16K
Deployments Projections

lifed 5 10 years after they are first commercially
available.

3. When each new deployment more than doubles
the code from previous configuration, there is not 0K

2005200019951990

Source: Philips Semiconductor data for high end television receiver

p g ,
sufficient budget to “port” or “fully test” all of the
new code on the integration platform.

4. Code reuse must be simple, effortless, and code

7© 2011 Atego. All Rights Reserved.

Source: Philips Semiconductor data for high-end television receiverintegration must be seamless.

Subsequent Data Point

GM CTO Anthony Scott (Oct. 2004):

“More than one-third of the cost of GM's automobiles
now involves software and electronic components”

“Cars had approximately 1 million lines of software
code in 1990, but this number will jump to 100 million , j p
by 2010”

Translation: code size doubles every 3 yearsTranslation: code size doubles every 3 years

8© 2011 Atego. All Rights Reserved.

Further Corroboration:
Growth in Complexity of NASA Space Mission Software

9© 2011 Atego. All Rights Reserved.

Source: D.L. Dvorak, ed., NASA Study on Flight Software Complexity, 3 March 2009

Further Corroboration:
Growth in Complexity of NASA Space Mission Software

10© 2011 Atego. All Rights Reserved.

Source: D.L. Dvorak, ed., NASA Study on Flight Software Complexity, 3 March 2009

Further Corroboration:
Growth in Complexity of NASA Space Mission Software

11© 2011 Atego. All Rights Reserved.

Source: D.L. Dvorak, ed., NASA Study on Flight Software Complexity, 3 March 2009

Further Corroboration:
Growth in Complexity of NASA Space Mission Software

12© 2011 Atego. All Rights Reserved.

Source: D.L. Dvorak, ed., NASA Study on Flight Software Complexity, 3 March 2009

Further Corroboration:
Growth in Complexity of NASA Space Mission Software

13© 2011 Atego. All Rights Reserved.

Source: D.L. Dvorak, ed., NASA Study on Flight Software Complexity, 3 March 2009

Initial Impressions of Java (1995)

My sense at the time was that Java provided a strong foundation on
which to build a technology that could address the emerging needs
of real-time developers

Superior portability

Strong encapsulation and object-oriented abstraction to support scalable
expansion of large software systems from independently developed
software components

But a variety of issues would need to be addressed in order to
deliver the benefits of traditional Java to the real-time domain

14© 2011 Atego. All Rights Reserved.

Statistical Study of Java Language Adoption

Java

C

C++

Java

C

Ada

Usage Trends of the 8 Most Popular Programming Languages

15© 2011 Atego. All Rights Reserved.

Usage Trends of the 8 Most Popular Programming Languages
“An Empirical Study of Programming Language Trends”, Chen, Dios, Mili, Wu, Wang
IEEE Software, May/June 2005

What makes one language more popular than another?

Top Intrinsic Factors (with statistical correlations)

M hi i d d (t bilit) (0 8876)Machine independence (portability) (0.8876)

Extensibility (scalability) (0.7625)

Generality (scalability) (0.6913)

Simplicity (-0.4703)

Implementability (-0.3390)

Reliability (scalability) (0.3199)

16© 2011 Atego. All Rights Reserved.

17
Extrinsic Factors Correlations

Extrinsic Factors: Support from

Institutions (e.g. university curricula)

Industry (corporate endorsements, guidelines, adoption)

Government (research funding, procurement guidelines)

Organizations (e.g. JUG)

Grass roots (how many count this as “primary or favorite
language?”)

Technology (vendor support, 3rd party involvement)

17© 2011 Atego. All Rights Reserved.

The Perc API Vision

Real-time programmers design, implement, and debug real-time
software components independent of the deployment platform and

ti t texecution context

Individual real-time components can choose whether to budget CPU
and memory resources conservatively or aggressivelyy y gg y

The same real-time components run reliably on

Faster and slower computers

Yesterday’s, today’s, and tomorrow’s computers

As standalone applications, and as individual contributors to complex
tsystems

On systems with abundant excess resources, and systems that are
oversubscribed

18© 2011 Atego. All Rights Reserved.

With independently managed variable service quality

Overview of the Original PERC Real-Time API

Depends on real-time garbage collection, predates
NoHeapRealtimeThread concepts

Real-time software components are structured as real-time
activities, each comprised of

Multiple tasksMultiple tasks

A CPU-time budget

A live-memory budget

A memory allocation rate budget

Resource budgets consist of a guaranteed allotment and an expected
allotmentallotment

A configure method that is used to determine the activity’s resource
needs on the current platform

19© 2011 Atego. All Rights Reserved.

A negotiate method that allows activity to approve proposed budgets

How does configure() determine resource needs?

Running benchmarks, using Perc services to understand the
benchmark behavior:

“Time” consumed by benchmark thread(s)

Memory allocated by benchmark thread(s)

Remembering results of previous runs on this or similar platforms
using the same Perc services to monitor resource consumption

Static analysis services are provided as part of the dynamic Perc
API run-time environment

WCET d EET f d i i i i l (f ili d bWCET and EET for code written in very restrictive style (facilitated by
compile-time analysis)

WC memory consumption of particular classes and objects

20© 2011 Atego. All Rights Reserved.

y p p j

Measures of “Time”

Activity time budgets are expressed in terms of Execution Time, which
is the combination of:

CPU Time

Block Time

CPU Time is the combination ofCPU Time is the combination of

Delay Time (spin loops, even if an implementation uses blocking)

Time executing instructionsTime executing instructions

Block Time includes

Endowed Time (when priority inheritance mechanism endows this thread’s (p y
CPU time allotment to another thread, including GC thread(s))

Time waiting to acquire synchronization lock, wait()ing, or suspended in I/O

21© 2011 Atego. All Rights Reserved.

Inherited Time is time spent by this thread running on behalf of other
threads

How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {{

approximation = initial_approximation;
initializeGlobalState(approximation);

}}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);updateGlobalState(approximation);
}

}

22© 2011 Atego. All Rights Reserved.

}

How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {{

approximation = initial_approximation;
initializeGlobalState(approximation);

} At i t t t l t ll}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {

o Atomic statements always execute all or
nothing, are abort deferred

o Must use analyzable subset of full Java
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);

y
o To avoid overrunning time budget, may

check timing compliance on entry
updateGlobalState(approximation);

}
}

23© 2011 Atego. All Rights Reserved.

}

How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {{

approximation = initial_approximation;
initializeGlobalState(approximation);

}}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);updateGlobalState(approximation);
}

}
o Timed statements are parameterized

with “execution time”

24© 2011 Atego. All Rights Reserved.

}
with execution time

How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {

o Atomic uses priority ceiling emulation to avoid
blocking, localizing analysis of execution time
{

approximation = initial_approximation;
initializeGlobalState(approximation);

}}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);updateGlobalState(approximation);
}

}

25© 2011 Atego. All Rights Reserved.

}

Types of Tasks

PeriodicTask repeatedly performs the event handling sequence
task.startup(); // execution-time bounded
timed(work_budget) {

task.work(); // stylized Java enables variable service quality
}}
task.finish(); // execution-time bounded

SporadicTask event handler is triggered by asynchronous events
with a maximum trigger frequency

SpontaneousTask is a one-shot event handler, often activated in
t ti i t d “ t it ”response to an unanticipated “opportunity”

OngoingTask is a background task, running with a fair share of CPU
resources; may consist of traditional Java code; may use atomic

26© 2011 Atego. All Rights Reserved.

resources; may consist of traditional Java code; may use atomic
statements to share data with other tasks

Spontaneous Activities

A SpontaneousTask is only allowed within a SpontaneousActivity

Only SpontaneousTasks are allowed in SpontaneousActivitiesOnly SpontaneousTasks are allowed in SpontaneousActivities

An application introduces a spontaneous activity to the real-time
executive, and specifies an upper bound on the time allowed for , p pp
configuration and negotiation.

If the real-time executive is able to accept the proposed spontaneous
activity’s workload and begin its execution within the specified time
bound, it is added to the workload

If not, the application is told that there are insufficient resources to , pp
perform the spontaneous activity at this time

27© 2011 Atego. All Rights Reserved.

Issues with the Bodies of Work Tasks

Timing out traditional Java code is problematic

Aborting a Java thread may leave shared data in an incoherent state
− Need a way to defer abortion during certain critical sections of codeNeed a way to defer abortion during certain critical sections of code
− Synchronized is not the same as abort-deferred

If a timed out thread defers its abort request too long, it will consume
more than its budgeted timemore than its budgeted time

Executing catch and finally clauses associated with aborted try
statements will also delay abortion beyond the budgeted time

If real-time threads are allowed to consume more time than was
budgeted, other real-time threads are pushed off their schedule
− Local concerns become global concerns

28© 2011 Atego. All Rights Reserved.

− Local concerns become global concerns

Style Restrictions on Bodies of Work Tasks

Not allowed to catch a TimeoutException

Atomic statements must be execution time analyzable; beforeAtomic statements must be execution-time analyzable; before
entering the abort-deferred body of the atomic statement, confirm
that there is enough time to execute to completion

Only atomic statements defer abortion; synchronized statements do not

Catch and finally clauses must be execution-time analyzable

Upon entry into a try-clause, the timeout clock is skewed forward to
account for the time that might subsequently be required to cleanup
the contextthe context.

Suppose catch and finally clauses require 20 μs and the budget for
execution of the try-statement is 10 ms, deliver the timeout request at 10

29© 2011 Atego. All Rights Reserved.

ms – 20 μs

Some thoughts on real-time scalability

Priorities are not scalable

Speak of deadlines insteadSpeak of deadlines instead

Priorities don’t span multiple cores, but deadlines do; SMP priority
inheritance based on deadlines works

In periodic tasks, it is unnatural to “wait” for data or conditions.

If a periodic task is expected to process data supplied by other tasks, the
design should assure that the data is produced on “schedule”; use
atomic statements to safely transfer data between threads

If aiting is req ired it ma be more appropriate to se aIf waiting is required, it may be more appropriate to use a
SporadicTask than a PeriodicTask.

30© 2011 Atego. All Rights Reserved.

So why didn’t we finish what we started?

Overly ambitious

Not compatible with most real time operating systemsNot compatible with most real-time operating systems

Sun Microsystems, the JCP, and JSR-1

Microsoft and the J Consorti mMicrosoft and the J Consortium

Too messy

The market became confused, scared, catatonic

Investors got cold feet

NewMonics redirected to a more conservative path

31© 2011 Atego. All Rights Reserved.

What was Plan B?

Java Standard Edition with Real-Time Garbage Collection
– Typical applications enforce time constraints of 1-100 msyp pp

Portable Real-Time Scheduling and Synchronization

– Global dispatching always runs the N highest priority ready Java threads
on N available cores

– Implements priority inheritance on all Java synchronization locks

– Maintains all thread queues in priority orderMaintains all thread queues in priority order

– Optional use of extended priority range (1-32)

Embedded integrations (RTOSes, processors, ROM)
Improved Timing Services
– Monotonically increasing clock for global synchronization

32© 2011 Atego. All Rights Reserved.

VM Management Services (monitor, control resource utilization)

Perc Ultra SMP Real-Time GC

Key attributes of Perc Ultra real-time GC for SMP Java:

– Preemptive

– Incremental

– Accurate

– Defragmenting

– Paced– Paced

– Parallel and Concurrent

Traditional Java virtual machines fail in one or more of these
aspects

33© 2011 Atego. All Rights Reserved.

Pacing of Garbage Collection

Preemption of GC by higher priority
non-Java threads

Preemption of GC by higher
Priority Java threads

30
80%

100%

non Java threadsPriority Java threads

20 60%

80%

10
20%

40%

20%

550 700650600

34© 2011 Atego. All Rights Reserved.

Real Time (seconds)

550 700650600

Incremental Mark and Sweep GC

Root
Pointers

Scan
ListList

List
End

Free
Lists

En

Lists

Live UnmarkedAllocatable Marked Scanned

35© 2011 Atego. All Rights Reserved.

Live, Unmarked

Marked, UnscannedDead

Allocatable Marked, Scanned

Fully Copying Garbage Collection

Incrementally copy objects from from-space into to-space

Redirect memory accesses between Relocated and
Reserved

A CBFrom-space:

C’ B’ A’To space: C B A

R d

To-space:

N

36© 2011 Atego. All Rights Reserved.

ReservedRelocated New

Implementation Approach

Every object has a valid-copy pointer contained within its
headerheader

A CBFrom-space:

C’ B’ A’To space: C’ B’ A’

R d

To-space:

37© 2011 Atego. All Rights Reserved.

ReservedRelocated

Mostly Stationary Garbage Collection

Root
Pointers

Scan
List

To space:From space:
List

List
End

Free
Lists

En

Lists

38© 2011 Atego. All Rights Reserved.

Incremental mark and sweep region

VM Management Services

Status inquiries reveal:
– CPU time consumed by each thread
– Memory allocation rates
– Total heap memory usage

Length of finalization queue– Length of finalization queue
– CPU time spent in garbage collection
– Memory reclaimed by garbage collection
– Amount of CPU time consumed at each priority level

M API lManagement API controls:
– Priorities for garbage collection and finalization
– Size of the heap (enlarge and shrink)

39© 2011 Atego. All Rights Reserved.

Size of the heap (enlarge and shrink)

Perc Development Flow

Java
fil Java Compiler

Java
l fil

Perc
Accelerator ™source files Java Compiler .class files

ROMizer™

Accelerator ™
AOT Compiler

ROMizer™
Static Linker

object file AOT Compiler

augmented
.class files

object file

Loader JIT Compiler

Perc VM lib Native Linker
Perc Virtual Machine

Interp. classes Comp. classes

40© 2011 Atego. All Rights Reserved.

Anecdotal Results

Calix: Rewrote management plane for C7 broadband loop carrier in
half the time of previous C effort, while learning Java, correcting
bugs in original software, and adding new functionality and
scalability. (2 fold improvement)

Lockheed Martin Aegis project: added support for “Standard MissileLockheed Martin Aegis project: added support for Standard Missile
6” in only 3 months. Before Java, this effort would have required at
least a full year. (4 fold improvement)

Lockheed Martin verified 3,500 requirements for a portion of Aegis
Weapons System software in only 5 months. Previous expectation

3 4 i t d (9 f ld i t)was 3-4 requirements per day. (9 fold improvement)

Intel built a fault-tolerant demo of new hardware by integrating
existing Java components in only 3 days Prior similar efforts with

41© 2011 Atego. All Rights Reserved.

existing Java components in only 3 days. Prior similar efforts with
C++ required 3 solid months! (20 fold improvement)

What have we learned in the past 15 years?

Non-standard Java syntax is a non-starter

Real time Ja a programs sho ld r n on traditional Ja a VMsReal-time Java programs should run on traditional Java VMs

The market for traditional Java is much larger than for real-time Java
– leverage traditional Java economies of scale

Structure “real-time Java” as libraries to avoid gratuitous incompatibility

Traditional Java software should run on a real-time Java VM

With proliferation of multicore processors, real-time Java needs to
incorporate support for processor affinities, SMP scheduling, SMP
priority inheritance

42© 2011 Atego. All Rights Reserved.

What have we learned in the past 15 years?

Multiple real-time clocks and user-defined clocks are important

As nchrono s transfer of control sho ld be more general than j stAsynchronous transfer of control should be more general than just
supporting timeouts

With all due respect to my esteemed colleagues, programming
language design by committee is not very effective

Ten-fold improvement needed to disrupt the status quo

43© 2011 Atego. All Rights Reserved.

Some thoughts on modernizing the Perc Real-Time API

Restructure the Perc Real-Time API entirely as a library

Provide an open-source library implementation to run on StandardProvide an open source library implementation to run on Standard
Edition Java

Allow varying quality of implementation; some platforms will lack:
− Real-time garbage collection
− Prioritization of thread scheduling
− Priority inheritance and priority ordered thread queues
− Priority ceiling emulation for implementation of atomic statements− Priority ceiling emulation for implementation of atomic statements
− Precise time accounting for running threads
− Ability to analyze worst-case execution times and approximate expected

execution times
− Precise time-driven alarms

Provide a tool chain to enforce restrictive styles in specific real-time
contexts

44© 2011 Atego. All Rights Reserved.

contexts

Benefits of running Perc API on non-real-time VM

Testing and debugging of functional behavior can exploit
mainstream economies of scale

Even in absence of “full compliance” with API requirements, real-
time semantics can be approximated

timed and atomic statements, activity configuration, resource negotiation

Real-time software running with approximate semantics on non-real-
time VM will be more real time than code that is not structuredtime VM will be more real-time than code that is not structured
according to real-time API

Providing an incremental (and painless) step towards disciplinedProviding an incremental (and painless) step towards disciplined
real-time execution of Java for the mainstream Java market shows
that community a manageable path forward

45© 2011 Atego. All Rights Reserved.

They will make incremental quality of implementation improvements as
motivated by free-market dynamics

Enforcing style restrictions on interruptible code

The @Responsive annotation marks code that can be timed out

Open issue: Can we supply libraries to provide network and consoleOpen issue: Can we supply libraries to provide network and console
I/O that would be considered @Responsive?

The catch and finally clauses within @Responsive methods must be y @ p
execution-time analyzable

Attributes of the @Responsive annotation specify upper bounds on
the responsiveness to an asynchronous signal

A @Responsive method can only invoke other @Responsive
th d ith tibl i b dmethods with compatible responsiveness bounds

Application developers are required to insert invocations of
Perc checkForSignal() within @Responsive code at “appropriate”

46© 2011 Atego. All Rights Reserved.

Perc.checkForSignal() within @Responsive code at appropriate
intervals (consistent with declared responsiveness bounds)

Two-Phase Analysis

@Responsive(latency_ms = 0, latency_ns = 100000)
void method(int arg1, int arg2) throws InterruptedException {

Perc.checkForSignal();
for (int i = 0; i < 10000; i++) {for (int i 0; i 10000; i) {

arg1 += arg2;
}
P h kF Si l()Perc.checkForSignal();

}

47© 2011 Atego. All Rights Reserved.

Two-Phase Analysis

@Responsive(latency_ms = 0, latency_ns = 100000)
void method(int arg1, int arg2) throws InterruptedException {

Perc.checkForSignal();
for (int i = 0; i < 10000; i++) {for (int i 0; i 10000; i) {

arg1 += arg2;
}
P h kF Si l()

Phase 1 (target independent) analysis
assures

Perc.checkForSignal();
}

1. That the first and last statements
in this @Responsive method
invoke checkForSignal()invoke checkForSignal()

2. That every path between the two
checkForSignal() invocations is
execution-time analyzable

48© 2011 Atego. All Rights Reserved.

execution time analyzable

Two-Phase Analysis

@Responsive(latency_ms = 0, latency_ns = 100000)
void method(int arg1, int arg2) throws InterruptedException {

Perc.checkForSignal();
for (int i = 0; i < 10000; i++) {

Phase 2 (target dependent) analysis
assures

for (int i 0; i 10000; i) {
arg1 += arg2;

}
P h kF Si l()

1. That the maximum execution time
between the first and last
invocations of checkForSignal() is

Perc.checkForSignal();
}

g ()
less than or equal to 100 μs

49© 2011 Atego. All Rights Reserved.

Representing atomic statements

Add the @Atomic annotation to a synchronized method to denote
that the object uses atomic PCP locking

The body of @Atomic synchronized method must be WCET analyzable

If one method is @Atomic synchronized, then all synchronized methods
must be marked @Atomic

For any class that has @Atomic synchronizers, all synchronized
methods in super- and sub-classes must be @Atomic synchronizedmethods in super and sub classes must be @Atomic synchronized

If a class has @Atomic synchronizers, then the class must implement
the PriorityCeilingEmulation interface (a refinement from the paper),
which has two methods:
− int msCeiling() and int nsCeiling()
− These are invoked by a real-time virtual machine each time an @Atomic

synchronized method is entered

50© 2011 Atego. All Rights Reserved.

synchronized method is entered
− A non-real-time virtual machine will not enforce priority ceilings

Implementing the timed statement

The Perc.timed() library service expects two arguments:

A RelativeTime object that is associated with the system’sA RelativeTime object that is associated with the system s
ExecutionTime clock, and

An Interruptible object – Interruptible implements Runnable and adds the
@Responsive annotation to its run() method

51© 2011 Atego. All Rights Reserved.

Summary

Different versions of real-time Java offer different
benefits to different audiences
Having failed to achieve widespread market acceptance,
many anticipated benefits of RTSJ “standardization” are
not being realizednot being realized

Multiple suppliers of tool chains, compilers, libraries
Abundance of off-the-shelf reusable software components
Widespread adoption allowing multiple end users to share
the costs of technology development
Free market competition to drive innovation and productFree market competition to drive innovation and product
improvement

An alternative approach to real-time Java may achieve

52© 2011 Atego. All Rights Reserved.

better acceptance and deliver greater benefits, with or
without standardization

