
Revisiting the “Perc Real-Time API”

1© 2011 Atego. All Rights Reserved.© 2011 Atego. All Rights Reserved.

Revisiting the Perc Real Time API
Kelvin Nilsen, Chief Technology Officer Java, Atego Systems



The extended history of real-time Java

Two research papers published in late 1995 and early 1996 
represent the original birth of real-time Java

Market response to these papers was overwhelmingly positive

Nearly 900 copies of the draft real-time Java API were downloaded in 
the 8 months following first publication in January 1996

Multiple RTOS vendors were “hearing from their customers” that they 
wanted this technology; I received multiple invitations to leave academiawanted this technology; I received multiple invitations to leave academia

Enthusiastic response motivated NIST to host “standardization” 
meetings on real-time Java

Got attention of Sun Microsystems, who did not want outsiders to be 
“defining” Java.  
− Their response was formation of the Java Community Process and formation of
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Their response was formation of the Java Community Process and formation of 
the JSR-1 expert group



Where are we today?

Over ten years after the RTSJ became an official standard, real-time 
Java as defined by RTSJ is still primarily a “research topic”

Very difficult to find commercial deployments

There is talk of a few defense system deployments, but very limited “real 
data” on how well RTSJ has worked in these deploymentsdata  on how well RTSJ has worked in these deployments

Plenty of opportunity for research projects

Meanwhile, about six months ago, a well-known commercialMeanwhile, about six months ago, a well known commercial 
avionics and defense technology supplier contacted Atego to 
request access to the original Perc API (as described in the paper 
first published in 1996)first published in 1996)

Would a different real-time Java “standard” have yielded different 
outcomes?
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Is it still possible to correct the course of real-time Java?



Before there was “Real-Time Java”, there was real-time Java

Origins

1980’s: earned way through graduate school setting up 8-bit computers, soldering 
RS-232 cables, writing a hard disk device driver, and authoring the VersaCom 
interrupt-driven IBM PC telecommunications program

Univ. of Arizona Computer Science convert from Physics undergraduate degree
− Graduate programming language coursework placed strong emphasis on language design 

and programming language expressiveness
− Gained strong appreciation for expressive power of programming languages
− SR (Synchronizing Resources) language design with Greg Andrews( y g ) g g g g
− Icon (successor to SNOBOL4) language design with Ralph Griswold
− Ph.D. topic: concurrent real-time version of Icon called “Conicon”, including my early work 

on real-time garbage collection (1985-88).

Subsequent NSF funded research on real time garbage collection for C++Subsequent NSF-funded research on real-time garbage collection for C++
− I had a solution looking for a problem
− But real-time programmers kept telling me they didn’t “need” garbage collection, …
− and they were right
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Transitioned work to Java beginning in late 1995
− Backing from angel investor, DARPA, venture capitalists



Considerations in Design of Original PERC Real-Time API

Target domain must be much broader than traditionalist “real-time”

Think “Star Wars”, the movie,

Must address shortcomings of then-current “real-time practice”:

Non-portable: real-time code is generally targeted, debugged, analyzed, 
tailored for a specific platform, assumptions are rarely documented

Non-scalable: every real-time programmer has to worry about what 
every other real-time programmer is doing (because of contention for y p g g (
CPU time, memory, network bandwidth, synchronized resources)

Non-modular: real-time programs are “monolithic”; there are no 
independent components every part is aware of and dependent onindependent components, every part is aware of and dependent on 
every other part

Impractical: though scheduling theory is solid, analysis of execution 
times is o erl conser ati e (b 100 ) especiall on modern processors
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times is overly conservative (by 100x), especially on modern processors, 
and interesting real-time workloads are not always predictable



Context: Moore’s Law of Software Growth
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Context: Moore’s Law of Software Growth
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p g ,
sufficient budget to “port” or “fully test” all of the 
new code on the integration platform.

4. Code reuse must be simple, effortless, and code 
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Source: Philips Semiconductor data for high-end television receiverintegration must be seamless.                                                       



Subsequent  Data Point

GM CTO Anthony Scott (Oct. 2004):

“More than one-third of the cost of GM's automobiles 
now involves software and electronic components”

“Cars had approximately 1 million lines of software 
code in 1990, but this number will jump to 100 million , j p
by 2010”

Translation: code size doubles every 3 yearsTranslation: code size doubles every 3 years
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Further Corroboration:
Growth in Complexity of NASA Space Mission Software
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Source: D.L. Dvorak, ed., NASA Study on Flight Software Complexity, 3 March 2009
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Further Corroboration:
Growth in Complexity of NASA Space Mission Software
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Source: D.L. Dvorak, ed., NASA Study on Flight Software Complexity, 3 March 2009



Initial Impressions of Java (1995)

My sense at the time was that Java provided a strong foundation on 
which to build a technology that could address the emerging needs 
of real-time developers

Superior portability

Strong encapsulation and object-oriented abstraction to support scalable 
expansion of large software systems from independently developed 
software components

But a variety of issues would need to be addressed in order to 
deliver the benefits of traditional Java to the real-time domain
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Statistical Study of Java Language Adoption
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Usage Trends of the 8 Most Popular Programming Languages
“An Empirical Study of Programming Language Trends”, Chen, Dios, Mili, Wu, Wang
IEEE Software, May/June 2005



What makes one language more popular than another?

Top Intrinsic Factors (with statistical correlations)

M hi i d d ( t bilit ) (0 8876)Machine independence (portability) (0.8876)

Extensibility (scalability) (0.7625)

Generality (scalability) (0.6913)

Simplicity (-0.4703)

Implementability (-0.3390)

Reliability (scalability) (0.3199)
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17
Extrinsic Factors Correlations

Extrinsic Factors: Support from

Institutions (e.g. university curricula)

Industry (corporate endorsements, guidelines, adoption)

Government (research funding, procurement guidelines)

Organizations (e.g. JUG)

Grass roots (how many count this as “primary or favorite 
language?”)

Technology (vendor support, 3rd party involvement)
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The Perc API Vision

Real-time programmers design, implement, and debug real-time 
software components independent of the deployment platform and 

ti t texecution context

Individual real-time components can choose whether to budget CPU 
and memory resources conservatively or aggressivelyy y gg y

The same real-time components run reliably on

Faster and slower computers

Yesterday’s, today’s, and tomorrow’s computers

As standalone applications, and as individual contributors to complex 
tsystems

On systems with abundant excess resources, and systems that are 
oversubscribed
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With independently managed variable service quality



Overview of the Original PERC Real-Time API

Depends on real-time garbage collection, predates 
NoHeapRealtimeThread concepts

Real-time software components are structured as real-time 
activities, each comprised of

Multiple tasksMultiple tasks

A CPU-time budget

A live-memory budget

A memory allocation rate budget

Resource budgets consist of a guaranteed allotment and an expected 
allotmentallotment

A configure method that is used to determine the activity’s resource 
needs on the current platform
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A negotiate method that allows activity to approve proposed budgets



How does configure() determine resource needs?

Running benchmarks, using Perc services to understand the 
benchmark behavior:

“Time” consumed by benchmark thread(s)

Memory allocated by benchmark thread(s)

Remembering results of previous runs on this or similar platforms 
using the same Perc services to monitor resource consumption

Static analysis services are provided as part of the dynamic Perc 
API run-time environment

WCET d EET f d i i i i l (f ili d bWCET and EET for code written in very restrictive style (facilitated by 
compile-time analysis)

WC memory consumption of particular classes and objects
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y p p j



Measures of “Time”

Activity time budgets are expressed in terms of Execution Time, which 
is the combination of:

CPU Time

Block Time

CPU Time is the combination ofCPU Time is the  combination of 

Delay Time (spin loops, even if an implementation uses blocking)

Time executing instructionsTime executing instructions

Block Time includes

Endowed Time (when priority inheritance mechanism endows this thread’s ( p y
CPU time allotment to another thread, including GC thread(s))

Time waiting to acquire synchronization lock, wait()ing, or suspended in I/O
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Inherited Time is time spent by this thread running on behalf of other 
threads



How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {{

approximation = initial_approximation;
initializeGlobalState(approximation);

}}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);updateGlobalState(approximation);
}

}
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}



How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {{

approximation = initial_approximation;
initializeGlobalState(approximation);

} At i t t t l t ll}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {

o Atomic statements always execute all or 
nothing, are abort deferred 

o Must use analyzable subset of full Java
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);

y
o To avoid overrunning time budget, may 

check timing compliance on entry
updateGlobalState(approximation);

}
}
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}



How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {{

approximation = initial_approximation;
initializeGlobalState(approximation);

}}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);updateGlobalState(approximation);
}

}
o Timed statements are parameterized 

with “execution time”
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}
with execution time



How does a real-time task manage its budgeted resources?

With judicious application of timed and atomic statements:
atomic {

o Atomic uses priority ceiling emulation to avoid 
blocking, localizing analysis of execution time
{

approximation = initial_approximation;
initializeGlobalState(approximation);

}}
timed (Time.us(250)) {

while (refinementDesirable(approximation)) {
approximation = refineApproximation(approximation);
atomic {

updateGlobalState(approximation);updateGlobalState(approximation);
}

}
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}



Types of Tasks

PeriodicTask repeatedly performs the event handling sequence
task.startup(); // execution-time bounded
timed(work_budget) {

task.work(); // stylized Java enables variable service quality
}}
task.finish(); // execution-time bounded

SporadicTask event handler is triggered by asynchronous events 
with a maximum trigger frequency

SpontaneousTask is a one-shot event handler, often activated in 
t ti i t d “ t it ”response to an unanticipated “opportunity”

OngoingTask is a background task, running with a fair share of CPU 
resources; may consist of traditional Java code; may use atomic
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resources; may consist of traditional Java code; may use atomic 
statements to share data with other tasks



Spontaneous Activities

A SpontaneousTask is only allowed within a SpontaneousActivity

Only SpontaneousTasks are allowed in SpontaneousActivitiesOnly SpontaneousTasks are allowed in SpontaneousActivities

An application introduces a spontaneous activity to the real-time 
executive, and specifies an upper bound on the time allowed for , p pp
configuration and negotiation.

If the real-time executive is able to accept the proposed spontaneous 
activity’s workload and begin its execution within the specified time 
bound, it is added to the workload

If not, the application is told that there are insufficient resources to , pp
perform the spontaneous activity at this time
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Issues with the Bodies of Work Tasks

Timing out traditional Java code is problematic

Aborting a Java thread may leave shared data in an incoherent state
− Need a way to defer abortion during certain critical sections of codeNeed a way to defer abortion during certain critical sections of code
− Synchronized is not the same as abort-deferred

If a timed out thread defers its abort request too long, it will consume 
more than its budgeted timemore than its budgeted time

Executing catch and finally clauses associated with aborted try 
statements will also delay abortion beyond the budgeted time

If real-time threads are allowed to consume more time than was 
budgeted, other real-time threads are pushed off their schedule
− Local concerns become global concerns
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− Local concerns become global concerns



Style Restrictions on Bodies of Work Tasks

Not allowed to catch a TimeoutException

Atomic statements must be execution time analyzable; beforeAtomic statements must be execution-time analyzable; before 
entering the abort-deferred body of the atomic statement, confirm 
that there is enough time to execute to completion

Only atomic statements defer abortion; synchronized statements do not

Catch and finally clauses must be execution-time analyzable

Upon entry into a try-clause, the timeout clock is skewed forward to 
account for the time that might subsequently be required to cleanup 
the contextthe context.

Suppose catch and finally clauses require 20 μs and the budget for 
execution of the try-statement is 10 ms, deliver the timeout request at 10 
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ms – 20 μs



Some thoughts on real-time scalability

Priorities are not scalable

Speak of deadlines insteadSpeak of deadlines instead

Priorities don’t span multiple cores, but deadlines do; SMP priority 
inheritance based on deadlines works

In periodic tasks, it is unnatural to “wait” for data or conditions.  

If a periodic task is expected to process data supplied by other tasks, the 
design should assure that the data is produced on “schedule”; use 
atomic statements to safely transfer data between threads

If aiting is req ired it ma be more appropriate to se aIf waiting is required, it may be more appropriate to use a 
SporadicTask than a PeriodicTask.
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So why didn’t we finish what we started?

Overly ambitious

Not compatible with most real time operating systemsNot compatible with most real-time operating systems

Sun Microsystems, the JCP, and JSR-1

Microsoft and the J Consorti mMicrosoft and the J Consortium

Too messy

The market became confused, scared, catatonic

Investors got cold feet

NewMonics redirected to a more conservative path
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What was Plan B?

Java Standard Edition with Real-Time Garbage Collection
– Typical applications enforce time constraints of 1-100 msyp pp

Portable Real-Time Scheduling and Synchronization

– Global dispatching always runs the N highest priority ready Java threads 
on N available cores

– Implements priority inheritance on all Java synchronization locks

– Maintains all thread queues in priority orderMaintains all thread queues in priority order

– Optional use of extended priority range (1-32)

Embedded integrations (RTOSes, processors, ROM)
Improved Timing Services
– Monotonically increasing clock for global synchronization
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VM Management Services (monitor, control resource utilization)



Perc Ultra SMP Real-Time GC

Key attributes of Perc Ultra real-time GC for SMP Java:

– Preemptive

– Incremental

– Accurate

– Defragmenting

– Paced– Paced

– Parallel and Concurrent

Traditional Java virtual machines fail in one or more of these 
aspects 
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Pacing of Garbage Collection

Preemption of GC by higher priority
non-Java threads

Preemption of GC by higher
Priority Java threads

30
80%

100%

non Java threadsPriority Java threads

20 60%

80%
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40%

20%
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Real Time (seconds)

550 700650600



Incremental Mark and Sweep GC

Root
Pointers

Scan
ListList

List
End

Free
Lists

En

Lists

Live  UnmarkedAllocatable Marked  Scanned
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Live, Unmarked

Marked, UnscannedDead

Allocatable Marked, Scanned



Fully Copying Garbage Collection

Incrementally copy objects from from-space into to-space

Redirect memory accesses between Relocated and 
Reserved

A CBFrom-space:

C’ B’ A’To space: C B A

R d

To-space:

N
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ReservedRelocated New



Implementation Approach

Every object has a valid-copy pointer contained within its 
headerheader

A CBFrom-space:

C’ B’ A’To space: C’ B’ A’

R d

To-space:
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ReservedRelocated



Mostly Stationary Garbage Collection

Root
Pointers

Scan
List

To space:From space:
List

List
End

Free
Lists

En

Lists
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Incremental mark and sweep region



VM Management Services

Status inquiries reveal:
– CPU time consumed by each thread
– Memory allocation rates
– Total heap memory usage

Length of finalization queue– Length of finalization queue
– CPU time spent in garbage collection
– Memory reclaimed by garbage collection
– Amount of CPU time consumed at each priority level

M API lManagement API controls:
– Priorities for garbage collection and finalization
– Size of the heap (enlarge and shrink)
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Size of the heap (enlarge and shrink)



Perc Development Flow

Java
fil Java Compiler

Java
l fil

Perc
Accelerator ™source files Java Compiler .class files

ROMizer™

Accelerator ™
AOT Compiler

ROMizer™
Static Linker

object file AOT Compiler

augmented
.class files

object file

Loader JIT Compiler

Perc VM lib Native Linker
Perc Virtual Machine

Interp. classes Comp. classes
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Anecdotal Results

Calix: Rewrote management plane for C7 broadband loop carrier in 
half the time of previous C effort, while learning Java, correcting 
bugs in original software, and adding new functionality and 
scalability. (2 fold improvement)

Lockheed Martin Aegis project: added support for “Standard MissileLockheed Martin Aegis project: added support for Standard Missile 
6” in only 3 months.  Before Java, this effort would have required at 
least a full year.  (4 fold improvement)

Lockheed Martin verified 3,500 requirements for a portion of Aegis 
Weapons System software in only 5 months.  Previous expectation 

3 4 i t d (9 f ld i t)was 3-4 requirements per day.  (9 fold improvement)

Intel built a fault-tolerant demo of new hardware by integrating 
existing Java components in only 3 days Prior similar efforts with
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existing Java components in only 3 days. Prior similar efforts with 
C++ required 3 solid months!  (20 fold improvement)



What have we learned in the past 15 years?

Non-standard Java syntax is a non-starter

Real time Ja a programs sho ld r n on traditional Ja a VMsReal-time Java programs should run on traditional Java VMs

The market for traditional Java is much larger than for real-time Java 
– leverage traditional Java economies of scale

Structure “real-time Java” as libraries to avoid gratuitous incompatibility

Traditional Java software should run on a real-time Java VM

With proliferation of multicore processors, real-time Java needs to 
incorporate support for processor affinities, SMP scheduling, SMP 
priority inheritance
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What have we learned in the past 15 years?

Multiple real-time clocks and user-defined clocks are important

As nchrono s transfer of control sho ld be more general than j stAsynchronous transfer of control should be more general than just 
supporting timeouts

With all due respect to my esteemed colleagues, programming 
language design by committee is not very effective

Ten-fold improvement needed to disrupt the status quo
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Some thoughts on modernizing the Perc Real-Time API

Restructure the Perc Real-Time API entirely as a library

Provide an open-source library implementation to run on StandardProvide an open source library implementation to run on Standard 
Edition Java

Allow varying quality of implementation; some platforms will lack:
− Real-time garbage collection
− Prioritization of thread scheduling 
− Priority inheritance and priority ordered thread queues
− Priority ceiling emulation for implementation of atomic statements− Priority ceiling emulation  for implementation of atomic statements
− Precise time accounting for running threads
− Ability to analyze worst-case execution times and approximate  expected 

execution times
− Precise  time-driven alarms

Provide a tool chain to enforce restrictive styles in specific  real-time 
contexts
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contexts



Benefits of running Perc API on non-real-time VM

Testing and debugging of functional behavior can exploit 
mainstream economies of scale

Even in absence of “full compliance” with API requirements, real-
time semantics can be approximated

timed and atomic statements, activity configuration, resource negotiation   

Real-time software running with approximate semantics on non-real-
time VM will be more real time than code that is not structuredtime VM will be more real-time than code that is not structured 
according to real-time API

Providing an incremental (and painless) step towards disciplinedProviding an incremental (and painless) step towards disciplined 
real-time execution of Java for the mainstream Java market shows 
that community a manageable path forward
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They will make incremental quality of implementation improvements as 
motivated by free-market dynamics



Enforcing style restrictions on interruptible code

The @Responsive annotation marks code that can be timed out

Open issue: Can we supply libraries to provide network and consoleOpen issue: Can we supply libraries to provide network and console 
I/O that would be considered @Responsive?

The catch and finally clauses within @Responsive methods must be y @ p
execution-time analyzable

Attributes of the @Responsive annotation specify upper bounds on 
the responsiveness to an asynchronous signal

A @Responsive method can only invoke other @Responsive 
th d ith tibl i b dmethods with compatible responsiveness bounds

Application developers are required to insert invocations of 
Perc checkForSignal() within @Responsive code at “appropriate”
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Perc.checkForSignal() within @Responsive code at appropriate  
intervals (consistent with declared responsiveness bounds) 



Two-Phase Analysis

@Responsive(latency_ms = 0, latency_ns = 100000)
void method(int arg1, int arg2) throws InterruptedException {

Perc.checkForSignal();
for (int i = 0; i < 10000; i++) {for (int i  0; i  10000; i ) {

arg1 += arg2;
}
P h kF Si l()Perc.checkForSignal();

}
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Two-Phase Analysis

@Responsive(latency_ms = 0, latency_ns = 100000)
void method(int arg1, int arg2) throws InterruptedException {

Perc.checkForSignal();
for (int i = 0; i < 10000; i++) {for (int i  0; i  10000; i ) {

arg1 += arg2;
}
P h kF Si l()

Phase 1 (target independent) analysis 
assures

Perc.checkForSignal();
}

1. That the first and last statements 
in this @Responsive method 
invoke checkForSignal()invoke checkForSignal()

2. That every path between the two 
checkForSignal() invocations is 
execution-time analyzable
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execution time analyzable



Two-Phase Analysis

@Responsive(latency_ms = 0, latency_ns = 100000)
void method(int arg1, int arg2) throws InterruptedException {

Perc.checkForSignal();
for (int i = 0; i < 10000; i++) {

Phase 2 (target dependent) analysis 
assures

for (int i  0; i  10000; i ) {
arg1 += arg2;

}
P h kF Si l()

1. That the maximum execution time 
between the first and last 
invocations of checkForSignal() is 

Perc.checkForSignal();
}

g ()
less than or equal to 100 μs
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Representing atomic statements

Add the @Atomic annotation to a synchronized method to denote 
that the object uses atomic PCP locking

The body of @Atomic synchronized method must be WCET analyzable

If one method is @Atomic synchronized, then all synchronized methods 
must be marked @Atomic

For any class that has @Atomic synchronizers, all synchronized 
methods in super- and sub-classes must be @Atomic synchronizedmethods in super and sub classes must be @Atomic synchronized

If a class has @Atomic synchronizers, then the class must implement 
the PriorityCeilingEmulation interface (a refinement from the paper), 
which has two methods:
− int msCeiling() and int nsCeiling()
− These are invoked  by a real-time virtual machine  each time an @Atomic 

synchronized method is entered
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synchronized method is entered
− A non-real-time virtual machine will not enforce priority ceilings



Implementing the timed statement

The Perc.timed() library service expects two arguments:

A RelativeTime object that is associated with the system’sA RelativeTime object that is associated with the system s 
ExecutionTime clock, and

An Interruptible object – Interruptible implements Runnable and adds the 
@Responsive annotation to its run() method
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Summary

Different versions of real-time Java offer different 
benefits to different audiences
Having failed to achieve widespread market acceptance, 
many anticipated benefits of RTSJ “standardization” are 
not being realizednot being realized

Multiple suppliers of tool chains, compilers, libraries
Abundance of off-the-shelf reusable software components
Widespread adoption allowing multiple end users to share 
the costs of technology development
Free market competition to drive innovation and productFree market competition to drive innovation and product 
improvement

An alternative approach to real-time Java may achieve 
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better acceptance and deliver greater benefits, with or 
without standardization


