
Martin Schoeberl and Juan Ricardo Rios
Technical University of Denmark

  How does a SCJ application look like
  JOP implementation details
  Some wishes for a change
  Conclusion

  A Safelet – is an interface
  A Mission object
  A sequencer
  Collection of handlers
◦  Periodic
◦  Aperiodic

  Interface to the world
◦  Simple terminal
◦  Many interfaces will be memory mapped IO
  Just heard about it from James

public class HelloSafelet implements Safelet {

 public MissionSequencer getSequencer() {
 return new HelloSequencer(
 new HelloMission());
 }

 public long immortalMemorySize() {
 return 1000;
 }
}

public class HelloSequencer extends MissionSequencer {

 Mission m;

 public HelloSequencer(Mission mission) {

 super(new PriorityParameters(13),
 new StorageParameters(1000000, null));
 m = mission;
 }

 protected Mission getNextMission() {
 return m;
 }
}

public class HelloMission extends Mission {

 protected void initialize() {
 OutputStream os = null;
 try {
 os = Connector.openOutputStream("console:");
 } catch (IOException e) {
 throw new Error("No console available");
 }
 HelloHandler hh = new HelloHandler(
 new SimplePrintStream(os));
 hh.register();
 }

 public long missionMemorySize() {
 return 100000;
 }
}

public class HelloHandler extends PeriodicEventHandler {

 SimplePrintStream out;
 int cnt;

 public HelloHandler(SimplePrintStream sps) {
 super(new PriorityParameters(11),
 new PeriodicParameters(
 new RelativeTime(0, 0),
 new RelativeTime(500, 0)),
 new StorageParameters(10000, null), 500);
 out = sps;
 }

 public void handleAsyncEvent() {
 out.println("Ping " + cnt);
 ++cnt;
 }
}

  There is a JOP simulation
  JVM implemented in Java
◦  Same restrictions as JOP ;-)
◦  Reads and execute JOP ‘binaries’

  Use System.currentTimeMillis() for scheduler
◦  Time checked during bytecode interpretation
◦  Slow, but ok
◦  No real-time guarantees

  Simulation about as fast as a 1 MHz JOP
  Good for system code debugging

  Java Optimized Processor
◦  A JVM in hardware (FPGA)

  Optimized for time-predictability
  Comes with a WCET analysis tool
  Has its ‘own’ restricted real-time Java classes
◦  RtThread and SwEvent
◦  No scopes, just IM (and RT GC)

  In use in academia and industry
  Open-source

  Add scope support
◦  With a single Memory class
◦  Presented at JTRES 2011 in York

  Scheduling - two options
◦  On top of RtThread
◦  Restructure to SCJ handlers

  RtThread
◦  Used in some examples and industrial applications
◦  Don’t want to drop the support
◦  Don’t want to change industrial applications
◦  Handler on RtThread has overheads

  Move to SCJ handlers
◦  More efficient
◦  Is a ‘standard’

  Does this restrict the JOP ecosystem?
◦  Can we still have plain single threaded Java apps?

  What about RTS with GC?
  Keep it all configurable
◦  Nice concept, but might end up in a nightmare

  Current solution: on top of RtThread

  Priority preemptive
◦  Standard RTOS scheduler

  JOP scheduler = SCJ scheduler
  Interrupt handler
◦  Timer interrupt
◦  Plain Runnable

  Looks ease – right?

  IH created and registered at system start
◦  No mission memory
◦  Is in immortal
◦  Static fields to find the thread list

  SCJ handlers
◦  Event handlers created by a mission in mission

memory
◦  => How to point to those handlers?
◦  Assignment issue

  The scheduler shall live in mission memory

  From RTSJ: events and handlers
◦  n:m mapping
◦  Needs references in both directions
  => in same scope

  Maybe too general for SCJ
  Simplify to a single class
◦  Just the handler
◦  Drop inheritance from BoundAsnycEventHandler
◦  Drop AperiodicEvent and AsyncEvent
◦  Add release() to AperiodicEventHandler

  Convenient place for shared data
◦  E.g. the console connection

  Cumbersome to allocate objects there
◦  Might use class initializers
◦  Executed at JVM/SCJ start
◦  Need to find an order

  Add a method initialize() to Safelet
◦  Executed in immortal before getNextMission()

  A SCJ application is a Safelet
  Start is vendor specific
◦  The SCJ implementation needs to create an object

of a class that implements Safelet
◦  How is this info communicated?
◦  We need reflection for the creation
◦  The constructor needs to be no-arg

  Why all this hassle?
  Why not a plain static method (main())?

public static void main(String[] args) {
 JopSystem.startMission(new HelloSafelet());

}

  Initial thread is in immortal
  SCJ app object allocated in immortal
  RI on RTSJ initial thread is in heap
◦  No issue for the start
  Provide the RI main method as part of the

implementation
  Enter IM
  Call the application/user main

  Implementation ok for examples
◦  Example app in next session
◦  Some parts are still missing

  Open Source
  Can be used without JOP
◦  Run the JOP SW simulator (in Java)
◦  No timing guarantees, but easy access

  Try it out and submit bug fixes ;-)

  Safety-Critical Java is here
  Prototype implementations emerge
◦  SCJ on HVM
◦  SCJ on JOP

  First test applications emerge
  Time to explore SCJ
◦  Expressiveness
◦  Easy to use - libraries

  Will it be a business?
◦  Not yet fully commitment form commercial vendors
◦  Is it just an academic toy?

