=8 KOREA VirginiaTech

88/ UNIVERSITY Invent the Future

A Framework accommodating
Categorized Multiprocessor Real-time Scheduling
in the RTSJ

Jinsan KwonT,
Hyeonjoong Chot
and Binoy Ravindran#*

TKorea University
Embedded Systems and Real-time Computing Lab.

Virginia Tech
System Software Research Group

%/ UNIVERSITY Invent the Future

Contents

1. Backgrounds
1.1 Categorization of Scheduling Algorithms
1.2 Scheduler Frameworks
1.3 RTSJ

2. The CMRF
2.1 Structures

2.2 Evaluation

3. Conclusion

Apx. Issues and Discussions

=8 K OREA @ VirginiaTech

83/ UNIVERSITY Invent the Future

1. Backgrounds

« RTSJ and its implementations provide very good environment for
real-time Java applications

— User-implemented schedulers can be applied to make scheduling
decisions

— However, it does not have any multiprocessor related features
“How can we make it useful for multiprocessor based schedulers?”

« Scheduling on multiprocessor systems is far more difficult than on
single processor systems
— There is no the Almighty solution for this problem yet

« Several operating systems are capable of multiple schedulers within
their kernels

=8 K OREA @ VirginiaTech

82/ UNIVERSITY Invent the Future

4

1.1 Categorization of
Scheduling Algorithms

* |n 2004, Carpenter et al.[1] presented a taxonomy for multiprocessor
scheduling algorithms in two-dimensional space

— The complexity of the priority scheme
« Static
« Dynamic, but fixed within a job
* Fully dynamic
— The degree of migration allowance
* No migration
« Migration only at job boundaries
* Unrestricted migration

unrestricted

] 3: Unrestricted migration (1,3)-restricted (2,3)-restricted (3,3)-restricted

g 2: Restricted migration (1,2)-restricted (2,2)-restricted (3,2)-restricted

S

_S 1: Partitioned (1,1)-restricted (2,1)-restricted (3,1)-restricted

®

S

= 1: Static 2: Job-level dynamic 3: Fully dynamic
partitioned/static fully dynamic

priority complexity

[1] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J. and Baruah, S. 2004. A categorization of real-time multiprocessor scheduling problems and algorithms.

=8 K OREA @ VirginiaTech

83/ UNIVERSITY Invent the Future

1.1 Categorization of
Scheduling Algorithms

* The progenitors of all scheduling algorithms|[2]
(grouped by priority dynamics)
— Static: RM
— Job-level dynamic: EDF
— Fully dynamic: LLF

* The basic schedulers for each category

3 Global RM Global EDF

o)

[0)

g

S Restricted migration RM Restricted migration EDF Restricted migration LLF
-7:0

o

€ Partitioned RM Partitioned EDF Partitioned LLF

priority complexity

[2] Miller, D. and Werner, M. 2011. Genealogy of Hard Real-Time Preemptive Scheduling Algorithms for Identical Multiprocessors. In Central European Journal of Computer Science, vol.1, no.3, pp.
253-265, September, 2011 DOI=10.2478/s13537-011-0023-z

=8 KOREA @ VirginiaTech

82/ UNIVERSITY Invent the Future

1.2 Scheduler Frameworks

« Embracing multiple scheduling algorithms
— Operating system
 Kernel
— Linux

— LITMUSRT
— ChronOS

» Kernel/Application
— RESCH

— Middleware framework

« RTSJ implementations
— JEOPARD

&) KOREA @VlrglmaTech

nt the Futur

1.3 RTSJ

* The Real-Time Specification for Java

— Current official spec: 1.0.2
» Real-time thread scheduling
 Memory management
» Resource sharing
« Asynchronous event handling

— Recent ‘Alpha’ release: 1.1 Alpha 6

* Processor affinity for threads and event handlers
« Minor updates, improvements and bugfixes

"'D“ KOREA
UNIVERSITY

iy VlrglmaTech

nt the Futur

1.3 RTSJ

Implementation of the RTSJ
e.g) Java Real-Time System (v2.2u1)

— A real-time virtual machine
« Java HotSpot Server VM + @ (RT features)

— RTSJ class libraries
+ RTSJ 1.0.2 (full)

— Java class libraries
« Java SE 5

o KOREA @ VirginiaTech
88/ UNIVERSITY Invent the Future

9

1.3 RTSJ

* Available RTSJ implementations

Implementation Remarks

RTS‘”J i |11 E L ast released imn J AN;;

2009

Sun Java RTS Oracle
WebSphere R

JEOPARD

1(JSR282) | JEOPARD | Uses parallel
Consortium | JamaicaVM
from aicas GmbH

OVM | 1.0.1 Purdue Under BSD License
University

= KOREA @ VirginiaTech

Invent the Future

2. The CMRF

« The Categorized
Multiprocessor

Real-time scheduling-supporting
middleware Framework

— Goal: To provide functions to embrace the progenitor algorithms
of each category

« With minimum changes on existing system

— Environment

* OS: Linux, kernel 2.6.x
— Native POSIX Thread Library
— (PREEMPT_RT or equivalent kernel preemption patches)

« RTSJ version: 1.0.2 (partial implementation)
— RealtimeThread
— Time and timers

— Scheduler and scheduling parameters

=8 K OREA @ VirginiaTech

83/ UNIVERSITY Invent the Future

2.1 The CMRF - Structures

« SCHED FIFO base scheduler
— Provided by Linux kernel
— The first-come thread with the highest priority is served first.
— Serving PriorityScheduler in the RTSJ

« Scheduling ‘Schedulables’ of the RTSJ
— Only RealtimeThread is currently supported.
— Direct use of SCHED_FIFO for thread scheduling

» sched_setparam: Priority changes
» sched_setaffinity: Thread migration

* Timers as sleep functions

— The basic timer is implemented using nanosleep() function provided by
underlying OS via Java Native Interface

=8 KOREA @ VirginiaTech

P UNIVERSITY Inveri]téheFuture
2.1 The CMRF - Structures
* The structure blocks of the CMRF

— Native block [Satiiead |[owatheaad | [iatbwesd ||

— Java Runtime Environment oo 4 g sl | ool Il e -l |

— Framework and RTSJ block | I | S)

— Application schedulers I rmr—

i scheduler
> : {
« Scheduling sequence ”25;:’:5:2?"}, - | Class
i i N heduler ibraries

— Scheduling decisions are _ ¢ | 1
made by application 3 8| (user-derined)|l | |
schedulers S @i | scheduler JJ{

— Within the decision making, <! i .)
the el|g|b|e thread |S gﬂ §' ey | Scheduling Framework + RTS))
d|SpatChed through %’ 8 B VM (RT/NRT)
the framework S 'ni Native Interfaces |

— The dispatched thread O
is scheduled by
SCHED FIFO .

i - System calls (POSIX)

e Linux Kernel ---#[SCHED_FIFO

= K OREA @ VirginiaTech

88/ UNIVERSITY Invent the Future

13

2.1 The CMRF - Structures

« Scheduling events
— Arrival of a new RealtimeThread
— Release of next period of a RealtimeThread
— Finishing a job

— Timer
» Thread scheduling flow amval
1) Job arrival
2) reschedule() Application T T
3) Dispatch() i
4) run() method e | | L
5 ... scheduler ¥ ’ v v
6) waitForNextPeriod() ,escheduieol l I
7) (go back to 2) T ;

Dispatcher v i v :

Dispatch() l l

r KOREA & VirginiaTech

Invent the Future

2.2 The CMRF - Evaluation

 Evaluation

— Task parameters
* Cost: < 10ms
* Deadline: 100ms
* Period: 100ms
» Total jobs: 100,000 releases / processor

— Test system

» Two Intel Xeon E5506 2.13GHz processors, 4 cores per processor
— 8 total processors

* Four AMD Opteron 6176 SE 2.3GHz processors, 12 cores per processor
— 48 total processors

* Ubuntu Linux 10.04.4, kernel 2.6.31
— With PREEMPT _RT patch applied

« OpenJDK6
— HotSpot Server VM

=8 K OREA @ VirginiaTech

82/ UNIVERSITY Invent the Future

15

2.2 The CMRF - Evaluation

« Deadline-miss ratio test, partitioned
— RM starts to miss deadlines

from utilization of BT |
7.2/33.6 (90%/70%) g TR $
with miss ratio of 0.95% and E 101 —rx--PLF
0.31% B
8 51
— EDF and LLF starts missing i [
from 7.2/43.2 (90%) with 0 - el
ratio of 0.39%/0.09%(EDF), 08 16 24 32 4 48 56 64 72 8
0.31%/0.05%(LLF) respectively Processor utlization
cacaven FEEE p
£ 101 = —P-LLF !’,f'
A 5 /
s /

0
48 96 144 192 24 288 336 384 432 48
Processor utilization

=8 K OREA @ VirginiaTech

82/ UNIVERSITY Invent the Future

16

2.2 The CMRF - Evaluation

« Deadline-miss ratio test, restricted migration
— RM starts to miss deadlines

from utilization of 6.4 (80%), .)\
ratio of 0.5% R vt
— EDF and LLF starts missing g | /
from 6.4/43.2 (80%/90%), —
6.4/48(80%/100%) with ratio i
of about 0.1% and 0.2% 0

08 16 24 32 4 48 56 64 72 8
Processor utilization

10+ ——r-RM
== =@l == r-EDF ¢
—=¥-—r-LLF '

48 96 144 192 24 288 336 384 432 48
Processor utilization

Miss ratio (%)
o

o KOREA @ VirginiaTech
88/ UNIVERSITY Invent the Future

17

2.2 The CMRF - Evaluation

* Deadline-miss ratio test, unrestricted migration

— RM starts to miss deadlines
from utilization of

6.4/38.4 (80%) with ratio of BT —eoRM ?
about 0.7% o1
® 154 /
— E/DF &startg/ r)nissing ?t S 104
8/48 (100%), ratio o 5 '
0.83%/0.98% 0§t ._4__4_@ -

08 16 24 32 4 48 56 64 72 8

Processor utilization

BT —o—GRM
«ee@--- G-EDF g

20 1 /
9
® 151 /
» /
§ 104 !/'

|
51
0 Gmmmimm P mimmm i immm P p o ==

48 96 144 192 24 2838 336 384 432 48

Processor utilization

=8 KOREA VirginiaTech

88/ UNIVERSITY Invent the Future

18

2.2 The CMRF - Evaluation

« Elapsed time of each algorithms
— Measurement of time taken for each algorithm

— Partitioned schemes takes it
from 81~152us @ Xeon E5506 (8) 1> 7892
— Dispatch() call takes 800 1 @ Opteron 6176SE (48)
90~100us, however, 700 -
partitioned algorithms do not 4 .
use affinity assign features

in the call L 200
 As calling Dispatch() =400 -
frequently, the algorithm 300 -
gets slower
— Restricted migration schemes 2% -
takes around 454~628us 100
— Global migration schemes 0

takes 643~801ms

=8 K OREA @ VirginiaTech

82/ UNIVERSITY Invent the Future

2.2 The CMRF - Evaluation

o Jitter test (within single processor)

— Measures release overhead
« Jitter time = [targeted release time — actual release time]

— Parameters
 Partitioned
 Utilization: 0.2
 Total releases: 160,000 jobs / processor

Intel Xeon E5506 (in nanosec.) @ AMD Opteron 6176SE (in nanosec.)
JRTS OVM CMRF JRTS OVM CMRF
Jitter, Min. 2,438 2,529 2,823 | | Jitter, Min, 1,457 58 1,308
Jitter, Max. 144,426 190,048 52,404 | | Jitter, Max. 2,295,608 7,672,276 2,220,614
Average jitter 53,546 62,201 52,404 | | Average jitter 302,836 417,186 293,807
Deviation 20,286 23,017 14,053 | | Deviation 180,192 359,516 117,969

= KOREA @ VirginiaTech

Invent the Future

3. Conclusion

« Two-dimensional categorization needs:
— Priority axis: priority parameters
— Migration axis: affinity setting

« This can be done by using corresponding system calls and
SCHED_FIFQO policy

— Thread scheduling using FIFO policy replaces
Schedulables scheduling on the RTSJ

* No other specially built JVM is needed to schedule real-time
Java threads on a system

=8 K OREA @ VirginiaTech

83/ UNIVERSITY Invent the Future

Appendix — Issues and Discussions

* Other major issues
— Memory management and garbage collection
— Resource sharing and synchronization

— High precision & accurate timing (< ms)
« Current timer is based on nanosleep() call
— Precise, but not accurate enough to handle (3,3) schedulers
— Supporting of thread dispatching model:
« RTSJ 1.1 thread dispatching model by Wellings in [3]

— More generalized dispatching for non-priority based scheduling

[3] Wellings, A. J. 2008. Multiprocessors and the Real-Time Specification for Java. In Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC '0
8). IEEE Computer Society, Washington, DC, USA, 255-261. DOI=10.1109/ISORC.2008.22

=8 K OREA @ VirginiaTech

82/ UNIVERSITY Invent the Future

22

Thank you for your attention

Jinsan Kwon

mrkwon@korea.ac.kr
http://esrc.korea.ac.kr

