
A Framework accommodating
Categorized Multiprocessor Real-time Scheduling
in the RTSJ

Jinsan Kwon†,
Hyeonjoong Cho†

and Binoy Ravindran‡

†Korea University
Embedded Systems and Real-time Computing Lab.

‡Virginia Tech
System Software Research Group

Contents

1. Backgrounds
1.1 Categorization of Scheduling Algorithms
1.2 Scheduler Frameworks
1.3 RTSJ

2. The CMRF
2.1 Structures
2.2 Evaluation

3. Conclusion

Apx. Issues and Discussions

2

1. Backgrounds

• RTSJ and its implementations provide very good environment for
real-time Java applications
– User-implemented schedulers can be applied to make scheduling

decisions
– However, it does not have any multiprocessor related features

“How can we make it useful for multiprocessor based schedulers?”

• Scheduling on multiprocessor systems is far more difficult than on
single processor systems
– There is no the Almighty solution for this problem yet

• Several operating systems are capable of multiple schedulers within
their kernels

3

1.1 Categorization of
Scheduling Algorithms

• In 2004, Carpenter et al.[1] presented a taxonomy for multiprocessor
scheduling algorithms in two-dimensional space
– The complexity of the priority scheme

• Static
• Dynamic, but fixed within a job
• Fully dynamic

– The degree of migration allowance
• No migration
• Migration only at job boundaries
• Unrestricted migration

m
ig

ra
tio

n
de

gr
ee

3: Unrestricted migration (1,3)-restricted (2,3)-restricted (3,3)-restricted

2: Restricted migration (1,2)-restricted (2,2)-restricted (3,2)-restricted

1: Partitioned (1,1)-restricted (2,1)-restricted (3,1)-restricted

1: Static 2: Job-level dynamic 3: Fully dynamic

priority complexity

[1] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J. and Baruah, S. 2004. A categorization of real-time multiprocessor scheduling problems and algorithms.

4

partitioned/static fully dynamic

unrestricted

• The progenitors of all scheduling algorithms[2]
(grouped by priority dynamics)
– Static: RM
– Job-level dynamic: EDF
– Fully dynamic: LLF

• The basic schedulers for each category

m
ig

ra
tio

n
de

gr
ee Global RM Global EDF …

Restricted migration RM Restricted migration EDF Restricted migration LLF

Partitioned RM Partitioned EDF Partitioned LLF

priority complexity

1.1 Categorization of
Scheduling Algorithms

[2] Müller, D. and Werner, M. 2011. Genealogy of Hard Real-Time Preemptive Scheduling Algorithms for Identical Multiprocessors. In Central European Journal of Computer Science, vol.1, no.3, pp.
253-265, September, 2011 DOI=10.2478/s13537-011-0023-z

5

1.2 Scheduler Frameworks

• Embracing multiple scheduling algorithms
– Operating system

• Kernel
– Linux
– LITMUSRT

– ChronOS
• Kernel/Application

– RESCH
– Middleware framework

• RTSJ implementations
– JEOPARD

6

1.3 RTSJ

• The Real-Time Specification for Java
– Current official spec: 1.0.2

• Real-time thread scheduling
• Memory management
• Resource sharing
• Asynchronous event handling

– Recent ‘Alpha’ release: 1.1 Alpha 6
• Processor affinity for threads and event handlers
• Minor updates, improvements and bugfixes

7

1.3 RTSJ

• Implementation of the RTSJ
e.g) Java Real-Time System (v2.2u1)
– A real-time virtual machine

• Java HotSpot Server VM + @ (RT features)
– RTSJ class libraries

• RTSJ 1.0.2 (full)
– Java class libraries

• Java SE 5

8

1.3 RTSJ

• Available RTSJ implementations
Implementation RTSJ Ver. Vendor Remarks
RTSJ RI 1.1a6 / 1.0.2(6) Last released in JAN

2009
Sun Java RTS 1.0.2 Oracle
IBM WebSphere RT 1.0.2 IBM
JEOPARD 1.1 (JSR282) JEOPARD

Consortium
Uses parallel
JamaicaVM
from aicas GmbH

Perc Pico JSR302 aonix J2ME environment
OVM 1.0.1 Purdue

University
Under BSD License

9

2. The CMRF

• The Categorized
Multiprocessor
Real-time scheduling-supporting
middleware Framework

– Goal: To provide functions to embrace the progenitor algorithms
of each category

• With minimum changes on existing system

– Environment
• OS: Linux, kernel 2.6.x

– Native POSIX Thread Library
– (PREEMPT_RT or equivalent kernel preemption patches)

• RTSJ version: 1.0.2 (partial implementation)
– RealtimeThread
– Time and timers
– Scheduler and scheduling parameters

10

2.1 The CMRF - Structures

• SCHED_FIFO base scheduler
– Provided by Linux kernel
– The first-come thread with the highest priority is served first.
– Serving PriorityScheduler in the RTSJ

• Scheduling ‘Schedulables’ of the RTSJ
– Only RealtimeThread is currently supported.
– Direct use of SCHED_FIFO for thread scheduling

• sched_setparam: Priority changes
• sched_setaffinity: Thread migration

• Timers as sleep functions
– The basic timer is implemented using nanosleep() function provided by

underlying OS via Java Native Interface

11

2.1 The CMRF - Structures

• The structure blocks of the CMRF
– Native block
– Java Runtime Environment
– Framework and RTSJ block
– Application schedulers

• Scheduling sequence
– Scheduling decisions are

made by application
schedulers

– Within the decision making,
the eligible thread is
dispatched through
the framework

– The dispatched thread
is scheduled by
SCHED_FIFO

12

2.1 The CMRF - Structures

• Scheduling events
– Arrival of a new RealtimeThread
– Release of next period of a RealtimeThread
– Finishing a job
– Timer

• Thread scheduling flow
1) Job arrival
2) reschedule()
3) Dispatch()
4) run() method
5) …
6) waitForNextPeriod()
7) (go back to 2)

13

2.2 The CMRF - Evaluation

• Evaluation
– Task parameters

• Cost: ≤ 10ms
• Deadline: 100ms
• Period: 100ms
• Total jobs: 100,000 releases / processor

– Test system
• Two Intel Xeon E5506 2.13GHz processors, 4 cores per processor

– 8 total processors
• Four AMD Opteron 6176 SE 2.3GHz processors, 12 cores per processor

– 48 total processors
• Ubuntu Linux 10.04.4, kernel 2.6.31

– With PREEMPT_RT patch applied
• OpenJDK6

– HotSpot Server VM

14

2.2 The CMRF - Evaluation

• Deadline-miss ratio test, partitioned
– RM starts to miss deadlines

from utilization of
7.2/33.6 (90%/70%)
with miss ratio of 0.95% and
0.31%

– EDF and LLF starts missing
from 7.2/43.2 (90%) with
ratio of 0.39%/0.09%(EDF),
0.31%/0.05%(LLF) respectively

15

2.2 The CMRF - Evaluation

• Deadline-miss ratio test, restricted migration
– RM starts to miss deadlines

from utilization of 6.4 (80%),
ratio of 0.5%

– EDF and LLF starts missing
from 6.4/43.2 (80%/90%),
6.4/48(80%/100%) with ratio
of about 0.1% and 0.2%

16

2.2 The CMRF - Evaluation

• Deadline-miss ratio test, unrestricted migration
– RM starts to miss deadlines

from utilization of
6.4/38.4 (80%) with ratio of
about 0.7%

– EDF starts missing at
8/48 (100%), ratio of
0.83%/0.98%

17

2.2 The CMRF - Evaluation

• Elapsed time of each algorithms
– Measurement of time taken for each algorithm
– Partitioned schemes takes

from 81~152us
– Dispatch() call takes

90~100us, however,
partitioned algorithms do not
use affinity assign features
in the call

• As calling Dispatch()
frequently, the algorithm
gets slower

– Restricted migration schemes
takes around 454~628us

– Global migration schemes
takes 643~801ms

18

2.2 The CMRF - Evaluation

• Jitter test (within single processor)
– Measures release overhead

• Jitter time = [targeted release time – actual release time]
– Parameters

• Partitioned
• Utilization: 0.2
• Total releases: 160,000 jobs / processor

Intel Xeon E5506 (in nanosec.)

JRTS OVM CMRF

Jitter, Min. 2,438 2,529 2,823

Jitter, Max. 144,426 190,048 52,404

Average jitter 53,546 62,201 52,404

Deviation 20,286 23,017 14,053

19

AMD Opteron 6176SE (in nanosec.)

JRTS OVM CMRF

Jitter, Min. 1,457 58 1,308

Jitter, Max. 2,295,608 7,672,276 2,220,614

Average jitter 302,836 417,186 293,807

Deviation 180,192 359,516 117,969

3. Conclusion

• Two-dimensional categorization needs:
– Priority axis: priority parameters
– Migration axis: affinity setting

• This can be done by using corresponding system calls and
SCHED_FIFO policy
– Thread scheduling using FIFO policy replaces

Schedulables scheduling on the RTSJ

• No other specially built JVM is needed to schedule real-time
Java threads on a system

20

Appendix – Issues and Discussions

• Other major issues
– Memory management and garbage collection
– Resource sharing and synchronization

– High precision & accurate timing (< ms)
• Current timer is based on nanosleep() call

– Precise, but not accurate enough to handle (3,3) schedulers
– Supporting of thread dispatching model:

• RTSJ 1.1 thread dispatching model by Wellings in [3]
– More generalized dispatching for non-priority based scheduling

[3] Wellings, A. J. 2008. Multiprocessors and the Real-Time Specification for Java. In Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC '0
8). IEEE Computer Society, Washington, DC, USA, 255-261. DOI=10.1109/ISORC.2008.22

21

Thank you for your attention

Jinsan Kwon
mrkwon@korea.ac.kr
http://esrc.korea.ac.kr

22

