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Introduction Goal

Motivation

Stack machines make for nice models but slow implementations, hence
bytecode folding, JIT on 3-address machines

Unrolling the stack or part of it, allows for fast data access in hardware
Java processors could use a performance boost (e.g. hardware accelerators)
Bluespec SystemVerilog offers useful abstractions, good tool support, a

few success stories

Question
Can we employ BSV and automation to generate accelerators for some of
the existing Java processors?
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Introduction Design Flow

From Java to Hardware, via BSV
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Introduction BSV in Brief

Bluespec SystemVerilog

A hardware description language based on SystemVerilog:
typing strong, static type-checking, polymorphism

modules as building blocks, encapsulating states and behavior,
requiring and implementing interfaces

interfaces described as sets of methods
methods atomic, guarded, callable behavior with/without side effects

rules atomic, guarded behavior snippets in modules, may trigger in
every execution cycle (always in Verilog), and finish within
the same cycle

clock is not explicitly visible (determined by the longest rule)

The compiler generates a conflict free schedule for rules/methods, and
needed control logic.
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Introduction BSV in Brief

Using BSV

BSV compiles to:
SystemC for modeling alongside other SystemC modules

Verilog for synthesis, easy to combine with other VHDL/Verilog
Bluesim host executable, fast, cycle accurate simulator

A number of BSV designs have been published, including a Java processor
(BlueJEP) with hardware memory management.

Idea
Can we transform sequences of assembly code (Java bytecodes) to
hardware using BSV high-level of abstraction constructs?
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From Bytecodes to Hardware

Our Hardware JVM

A BSV module, providing a subset of bytecodes as interface.
(123 bytecodes as methods and rules)
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From Bytecodes to Hardware

Bytecodes as Action Methods

Bytecodes transform a computing context into another context . . .
in one clock cycle = one method (see Listing 1)
over several cycles = start method + several rules (see Listing 2)

Contexts = operand stack, locals, constant pool address, Java pc
implemented as lists of registered signals
registered (saved) explicitly (method) or by certain bytecodes
restored explicitly (method)

method ActionValue #( Context) isub(Context in);
let r1 = in.stack [0];
let r2 = in.stack [1];
let r = r2 - r1;
$display("isub␣[..,%d,%d␣->␣..,%d]",r1,r2,r);
return Context {stack:cons(r, drop(2,in.stack)),

locals:in.locals ,cp:in.cp, jpc:in.jpc +1};
endmethod
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From Bytecodes to Hardware

Bytecodes to BSV Details

Sequences of bytecodes −→ basic-ish blocks −→ guarded rules:
guards are specific method id, Java pc

start by building (restoring) context from registers
end with saving context explicitly, or multi-cycle bytecodes

rule methodA_lXtolY( !jvm.busy() &&
jvm.getCurrentMethod () == IdA && jvm.getCurrentJPC () == X );
let in <- jvm.restoreContext ();
let lX <- jvm.bytecode1(in, opd);
// ... more bytecode method calls ...
let out <- jvm.bytecodeN(in , opd1 , opd2);
jvm.saveContext(out); // or
// invokestatic , return , getstatic , ldc , ...

endrule

The choices: one rule per method (sometimes) ←→ one rule per bytecode
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From Bytecodes to Hardware

Bytecodes to BSV Concept
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From Bytecodes to Hardware

Advanced Features

invokes & recursion supported via a specified size context stack, limiting
the depth of calls

object access using JOP/BlueJEP memory layout, through an OPB bus

memory management new bytecodes, garbage collection should be handled
by the companion processor

exceptions have limited support, stack restore & jumps

multi-threading is limited, only as independent hardware JVMs.
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Experimental Evaluation

Tools and Setup

Synthesis → device area, maximum clock frequency
BSV compiler 2012.01.A, BSV → Verilog
Xilinx ISE 14.1, Verilog → FPGA
FPGA, Xilinx Spartan-6 (XC6SLX16)

Simulation → executed clock cycles
Desktop, Linux
BSV compiler 2012.01.A, BSV → Bluesim (executable)
custom tools for parsing the output from instrumented
code, as well as estimate JOP timing

Applications : ours (hand coded) vs. JOP software vs. Hanna2011 [17]
GCD Euclid’s algorithm, (12365400, 906)

Sieve2 Eratosthenes sieve, 100 primes
Qsort recursive, 4000 values
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Experimental Evaluation Results

Performance

Application Method Clock Cycles Max. Clock (MHz) Time (ms)

BSV (8 rules) 27,348 151 0.181

GCD Hanna 54,652 200 0.273

JOP 218,790 93 2.353

BSV (12 rules) 32,475 152 0.214

Sieve2 Hanna 16,023 125 0.128

JOP 113,198 93 1.217

BSV (30 rules) 1,669,820 117 14.272

Qsort Hanna (Iter.) 486,520 125 3.892

JOP 4,377,628 93 47.071

Device area: published data to compare to is lacking, see Table 2.
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Summary & Future Work

Finally...

Summary A method for translating Java bytecode sequences to
hardware, via Bluespec SystemVerilog,

well suited for automation
intended for acceleration (e.g. of JOP, BlueJEP)

To Do complete the translator tool
optimize the partitioning into rules
add simple new bytecodes implementations
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Thank you!

Questions?
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