
The Use of JML in
Embedded Real-Time

Systems
Joseph Kiniry

Technical University of Denmark

JTRES 2012
24 October 2012

Acknowledgements
• Some content based on an OOPSLA

tutorial by: Gary T. Leavens, Curtis Clifton,
Hridesh Rajan, and Robby

• which in turn was based on a CAV tutorial
by: Gary T. Leavens, Joseph R. Kiniry, and
Erik Poll

• which in turn was based on ECOOP,
ETAPS, FM, FMCO, and TOOLS tutorials by
some of the above and: David Cok, Fintan
Fairmichael, and Dan Zimmerman

This Talk
• a bit of a Java Modeling Language tutorial

• (to help all of you who are using JML in
your research and talks not have to re-
introduce JML in each talk and to
proselytize a bit about the language)

• details about constructs relevant to
specifying and reasoning about RT Java

• (some advanced facets of the language)

• identification of research opportunities

• (try to be visionary and inspirational)

The Java Modeling
Language (JML)

• Today:

• formal

• sequential

• functional behavior

• mathematical models

• Java 1.4, JavaCard,
Personal Java, etc.

• Ongoing:

• mechanized semantics

• multithreading

• temporal logic

• resources

• Java 1.5 and later

JML’s Goals

• usable by and useful for “normal” Java
programmers

• JML syntax is an extension of Java’s syntax

• practical and effective for detailed model-
based designs

• useful for specifying existing code or
performing design-by-contract

• support a wide range of tools

Detailed Design
Specification

• JML handles:

• inter-module
interfaces

• classes and
interfaces

• fields (data)

• methods (behavior)

• JML does not handle:

• user interface

• architecture

• dataflow

• design patterns

• Floyd/Hoare-style specifications (contracts)

• method pre- and postconditions

• preconditions are client obligations

• postconditions are supplier obligations

• class and object invariants

• invariants must hold during quiescence

• ...and then add a load of features necessary
to specify programs in an OO language as
rich (and messy, and complex) as Java

Basic Approach

A First JML
Specification Example

public class ArrayOps {
 private /*@ spec_public @*/ Object[] a;
 //@ public invariant 0 < a.length;
 /*@ requires 0 < arr.length;
 @ ensures this.a == arr; @*/
 public void init(Object[] arr) {
 this.a = arr;
 }
}

field specification

object invariant

method specification

Interface Specification

Java Code

JML Specification

Syntactic Interface Functional Behavior

Interface Specification

 public void init(Object[] arr)
 { this.a = arr; }

 /*@ requires 0 < arr.length;
 @ ensures this.a == arr; @*/
 public void init(Object[] arr);

 public void init(Object[] arr); requires 0 < arr.length;
 ensures this.a == arr;

Advanced Features
• specifications that include just pre- and postconditions and invariants

are just the tip of the iceberg

• a variety of convenience annotations are available for common
specification patterns

• non-null default semantics, non-null elements in collections, strong
validity of expressions, specification lifting for fields; initial state and
history constraints; redundant specifications; exceptional
termination; informal specifications; freshness; purity; examples; set
comprehension; concurrency patterns

• a multitude of concepts that support rich specifications also exist

• lightweight vs. heavyweight specs; privacy modifiers and visibility;
instance vs. static specs; alias control via the universe type system;
data refinement; datagroups; heap access and reachability; first-order
quantifiers and boolean logic operators; generalized quantifiers; type
operators; loop annotations; assumptions and assertions; axioms;
several models of arithmetic; non-termination; frame axioms

Advanced Example(s)
// The classic Bag of integers example

class Bag {
 int[] a = new int [0];
 int n;

 Bag(int[] i) {
! n = i.length;
! a = new int[n];
! System.arraycopy(i, 0,
 a, 0, n);
 }

 int extractMin() {
 int m = Integer.MAX_VALUE;
 int mindex = 0;
 if (a != null) {
 ! for (int i = 1; i <= n; i++) {
 ! ! if (a[i] < m) {
 ! ! ! mindex = i;
 ! ! ! m = a[i];
 ! ! }
 ! }
 ! n--;
 ! a[mindex] = a[n];
 ! return m;
 } else {
 ! return 0;
 }
 }
}

Lightweight Specs
class Bag {
 int[] a;
 int n;
 //@ invariant 0 <= n && n <= a.length;
 //@ public ghost boolean empty;
 //@ invariant empty == (n == 0);

 //@ modifies a, n;
 //@ ensures this.empty == (input.length == 0);
 public /*@ pure */ Bag(int[] input) {
 n = input.length;
 a = new int[n];
 System.arraycopy(input, 0, a, 0, n);
 //@ set empty = n == 0;
 }

 //@ ensures \result == empty;
 public /*@ pure @*/ boolean isEmpty() {
 return n == 0;
 }

 //@ requires !empty;
 //@ modifies empty;
 //@ modifies n, a[*];
 public int extractMin() {

 int m = Integer.MAX_VALUE;
 int mindex = 0;
 for (int i = 0; i < n; i++) {
 if (a[i] < m) {
 mindex = i;
 m = a[i];
 }
 }
 n--;
 //@ set empty = n == 0;
 //@ assert empty == (n == 0);
 a[mindex] = a[n];
 return m;
 }
}

full, basic
lightweight

specification

new methods to
support specification

abstraction

notice the default
non-null semantics

abstraction of
“empty-ness”

frame axioms for
non-pure methods

in-line assertions for
validation and verificationintroduce purity

Document It!
/**
 * A bag of integers.
 *
 * @author The DEC SRC ESC/Java research teams
 * @author Joe Kiniry (kiniry@acm.org)
 * @version JTRES-23102012
 */
class Bag {
 /** A representation of the elements of
 this bag of integers. */
 int[] my_contents;
 /** This size of this bag. */
 int my_bag_size;
 /*@ invariant 0 <= my_bag_size &&
 my_bag_size <= my_contents.length; */
 //@ public ghost boolean empty;
 //@ invariant empty == (my_bag_size == 0);

 /**
 * Build a new bag, copying
 * <code>input</code> as its initial
 * contents.
 * @param the_input the initial contents
 * of the new bag. */
 //@ assignable my_contents, my_bag_size;

 /*@ ensures empty ==
 (the_input.length == 0); */
 public /*@ pure @*/ Bag(final int[]
 the_input) { ... }

 /** @return if this bag is empty. */
 //@ ensures \result == empty;
 public boolean isEmpty() { ... }

 /** @return the minimum value in this bag
 and remove it from the bag. */
 //@ requires !empty;
 //@ modifies empty;
 //@ modifies my_bag_size, my_contents[*];
 public int extractMin() { ... }
}

add Javadocs
for humans

hide unnecessary methods and
method bodies henceforth

tighten specs
on formal

parameters

Lift Abstraction
class Bag {
 private /*@ spec_public */ int[] my_contents;

 private /*@ spec_public */ int my_bag_size;
 /*@ invariant 0 <= my_bag_size &&
 my_bag_size <= my_contents.length; */

 //@ public ghost boolean empty;
 //@ invariant empty == (my_bag_size == 0);

 //@ public behavior
 //@ assignable my_bag_size, my_contents, empty;
 //@ ensures empty == (the_input.length == 0);
 //@ signals (Exception) false;
 public /*@ pure @*/ Bag(final int[] the_input)
 { ... }

 //@ public behavior
 //@ ensures \result == empty;
 //@ signals (Exception) false;
 public /*@ pure */ boolean isEmpty() { ... }

 //@ public behavior
 //@ requires !empty;
 //@ assignable empty, my_contents[*], my_bag_size;
 //@ signals (Exception) false;
 public int extractMin() { ... }

introduce
model

variables

use
heavyweight

specs

specify
exceptional

behavior

hide
Javadocs

henceforth

tighten
visibility

Data Abstraction
class Bag {
 private /*@ spec_public */ int[] my_contents;
 //@ in objectState;
 //@ maps my_contents[*] \into objectState;

 private /*@ spec_public */ int my_bag_size;
 //@ in objectState;
 /*@ invariant 0 <= my_bag_size &&
 my_bag_size <= my_contents.length; */

 //@ public ghost boolean empty; in objectState;
 //@ invariant empty == (my_bag_size == 0);

 //@ public behavior
 //@ assignable objectState;
 //@ ensures empty == (the_input.length == 0);
 //@ signals (Exception) false;
 public /*@ pure */ Bag(final int[] the_input)
 { ... }

 //@ public behavior
 //@ requires !empty;
 //@ assignable objectState;
 //@ signals (Exception) false;
 public int extractMin() { ... }

introduce
datagroups

add data
refinement

now supports
specification evolution

Control Aliasing
class Bag {
 private /*@ \rep */ int[] my_contents;
 //@ in objectState;
 //@ maps my_contents[*] \into objectState;

 private /*@ \rep */ int my_bag_size;
 //@ in objectState;
 /*@ private invariant 0 <= my_bag_size &&
 my_bag_size <= my_contents.length; */

 //@ public model boolean empty; in objectState;
 //@ represents empty <- isEmpty();
 //@ public invariant empty <==> (my_bag_size == 0);

 //@ public behavior
 //@ assignable objectState;
 //@ ensures isEmpty() <==> (the_input.length == 0);
 //@ signals (Exception) false;
 public /*@ pure */ Bag(final int[] the_input) {
 my_bag_size = the_input.length;
 my_contents = new /*@ rep */ int[my_bag_size];
 System.arraycopy(the_input, 0,
 my_contents, 0, my_bag_size);
 }

use universe
type system

refine
specification

visibility

use
logical

operators

Specs for Reasoning
class Bag {
 private /*@ \rep */ int[] my_contents;
 //@ in objectState;
 //@ maps my_contents[*] \into objectState;

 private /*@ \rep */ int my_bag_size;
 //@ in objectState;
 /*@ private invariant 0 <= my_bag_size &&
 my_bag_size <= my_contents.length; */

 //@ public model boolean empty; in objectState;
 //@ represents empty <- isEmpty();
 //@ public invariant empty <==> (my_bag_size == 0);

 //@ public behavior
 //@ assignable objectState;
 //@ ensures isEmpty() <==> (the_input.length == 0);
 //@ ensures my_contents.equal(the_input);
 //@ ensures my_bag_size == the_input.length;
 //@ signals (Exception) false;
 public /*@ pure */ Bag(final int[] the_input) { ... }

 //@ public behavior
 //@ requires !empty;
 //@ assignable objectState;
 //@ ensures my_bag_size == \old(my_bag_size - 1);
 //@ ensures (* one smallest element is removed *);
 /*@ ensures (\exists SortedSet set, int smallest,
 List<int> list;
 list = Arrays.asList(my_contents) ==>
 set = new TreeSet(list) ==>
 smallest = s.first();
 Collections.frequency(list, smallest) ==
 \old(Collections.frequency(list,
 smallest) - 1)); */

 //@ signals (Exception) false;
 public int extractMin() { ... }
}

fully specify
interface behavior

Internal Specs for Reasoning
 public int extractMin() {
 int m = Integer.MAX_VALUE;
 int mindex = 0;
 /*@ maintaining m != Integer.MAX_VALUE ==>
 (\forall int j; 0 <= j & j < i & j != mindex;
 my_contents[j] < m & my_contents[mindex] == m);
 */
 //@ decreasing my_bag_size - i;
 for (int i = 0; i < my_bag_size; i++) {
 if (my_contents[i] < m) {
 mindex = i;
 m = my_contents[i];
 }
 }
 my_bag_size--;
 my_contents[mindex] = my_contents[my_bag_size];
 return m;
 }
}

add loop
specifications

public class ArrayOps {
 private /*@ spec_public @*/ Object[] a;
 //@ public invariant 0 < a.length;
 /*@ requires 0 < arr.length;
 @ ensures this.a == arr; @*/
 public void init(Object[] arr) {
 this.a = arr;
 }
}

Many Tools, One Language

data traces

Daikon

specification
generation

Daikon Houdini

correctness proof

ESC/Java2, KeY, Mobius,
Jack, JIVE, Krakatoa, LOOP

model checking

Bandara
requirements

tracing

BONc

architecture
specification

BONc, Beetlz

class file

jmlc, jml4c,
JMLEclipse, OpenJML

unit tests

jmlunit, JMLunitNG,
KeYTestGen

web pages
jmldoc, OpenJML warnings

ESC/Java2, OpenJML,
JMLEclipse

Complementary Tools

• different strengths

• runtime checking exhibits real errors

• static checking ensures better coverage

• verification provides strong guarantees

Typical Methodology

1. runtime checker (program and tests)

2. extended static checking

3. verification

Rigorous Methodology
1. perform formal analysis and high-level design (e.g., with

UML or BON)

2. generate or hand-write detailed design in JML (Beetlz)

3. check soundness and measure quality of specifications
using static checkers (Metrics, ESC/Java2)

4. generate unit tests (jmlunit, JMLunitNG, KeYTestGen)

5. use runtime checker during validation and execution

6. perform syntactic and semantic static analysis
(CheckStyle, PMD, FindBugs, Metrics, ESC/Java2, Beetlz,
AutoGrader)

7. perform verification (Jack, JIVE, Krakatoa, Mobius PVE,
KeY, CHARGE!)

Interest in JML
• dozens of tools

• state-of-the-art specification language

• large and open research community

• nearly 30 research groups worldwide

• over 200 research papers published

• dozens of PhD dissertations

See jmlspecs.org

Advantages to JML

• reuse language design

• ease communication with other researchers

• share customers for science and engineering

Join us!

More at www.jmlspecs.org
• documents

• “Design by Contract with JML”

• “An overview of JML tools and applications”

• “Preliminary Design of JML”

• “JML’s Rich, Inherited Specifications for Behavioral
Subtypes”

• “JML Reference Manual”

• Also:

• Examples, teaching material.

• Downloads, SourceForge project.

• Links to papers, etc.

JML’s Relevance to RT Java
• existing API specifications

• specification-only constructs

• ghost fields

• model fields, methods, classes, and programs

• native models

• memory-related specification constructs

• resource specifications

Existing API Specs
• existing API specs for the JDK are poor, but for

JavaCard and RT Java are quite good

• API specifications are written lazily and in bursts during
JML “Specathons” run by myself and Zimmerman

• a novel spec-writing process and tool support has
been published in TAP’12

• moderately complete specification exist for few core
JDK packages (java.[io, lang, util])

• poor specs exist for other core JDK packages
(java.[awt, math, net, security, sql])

• complete specs exist for javacard.framework and
javax.realtime thanks to Nijmegen researchers et al.

Ghosts
• ghost fields and variables are useful for explicitly

modeling explicit specification-only data

• they are used inside of assertions like contracts and
invariants

• their value is explicitly updated using the set statement

• recall: //@ public model boolean empty; in objectState;
//@ represents empty <- isEmpty();
//@ public invariant empty <==> (my_bag_size == 0);

and inside of extractMin()

//@ set empty = n == 0;
//@ assert empty == (n == 0);

Models

• model fields, methods, classes, and programs are
extremely useful for modeling platform constructs
and algorithms

• model programs are used to specify abstract
algorithms and a concrete method’s execution
must refines its model program

• model classes and methods are useful for
abstracting domain concepts into a specification

• e.g., novel memory models like in RT Java

Native Models
• native models permit one to define the semantics

of a JML model in another formalism/tool

• some JML model classes (pure, functional,
executable, ADT-based sets, lists, bags, etc.) have
native models expressed in Coq, Isabelle, or PVS

• some JDK concurrency constructs have native
models expressed in LTL or PVS

• the Java memory model has native models
expressed in rich heap models in various HOLs
and SMT

Memory-related Specs
• reach expressions permit one to specify

and reason about the set of objects
reachable from a reference within a heap

//@ public invariant
//@ (\forall Object o, p, MemoryArea a, b;
//@ a = MemoryArea.getMemoryArea(o) &
//@ b = MemoryArea.getMemoryArea(p) & a != b;
//@ (a instanceof ImmortalMemory) &
//@ (b instanceof HeapMemory) ==>
//@ reach(b).intersection(reach(a)).isEmpty());

Resource Specs:
Stack Depth

• measured_by permits one to specify the
measure of recursion to reason about
termination, a la PVS’s measure construct,
except limits to the integer type
factorial(x: nat): RECURSIVE nat =
 IF x = 0 THEN 1 ELSE x * factorial(x - 1) ENDIF
 MEASURE (LAMBDA (x: nat): x)

//@ measured_by x;
int factorial(int x) {
 if (x == 0) return 1;
 else return x * factorial(x-1);
}

Primitive Space
Complexity

• working_space is used to specify the
maximum amount of heap space, in bytes,
used by a method call or constructor

//@ public behavior
//@ assignable objectState;
//@ ensures isEmpty() <==> (the_input.length == 0);
//@ signals (Exception) false;
//@ working_space 4 * the_input.length;
//@ working_space_redundantly
//@ \working_space(\type(int)) * the_input.length;
public Bag(final int[] the_input)

• a space specification describes the
amount of space consumed by an object
(much like sizeof in the C family of
languages)

Space for an Object

//@ public behavior
//@ assignable objectState;
//@ ensures isEmpty() <==> (the_input.length == 0);
//@ ensures space(my_contents) == space(the_input);
//@ signals (Exception) false;
//@ working_space 4 * the_input.length;
public Bag(final int[] the_input)

• the duration clause is used to specify the
maximum number of virtual machine cycles a
method (not counting garbage collection time)

• unfortunately, general-purpose VM cycle time
for instructions has never been specified in the
Java VM specification

• duration clause parameter is of type long, not
an algebraic expression (not big-O notation)

Primitive Time Complexity

Research Opportunities

• tool development and maintenance

• extensible tool architecture

• integration with modern IDEs

• unification of tools

• integration with Java annotations

• domain-specific language extensions

• via new models and language extensions

JML Models and
Extensions for RT Java
• RT Java deserves rich native model-based

specifications for:

• memory-related classes using a rich
abstracted heap model

• threads, scheduling, and synchronization

• time, clocks, and timers

• asynchrony

Java Level X Extensions
for RT Java

• this community should propose and
experiment with new JML annotations for:

• time complexity that understands big-O
(and related) notations

• memory types

• timers and asynchronous events

• ACET and WCET scheduling

The State of JML

• many experimental compilers are available
for “modern” Java

• AJML2 (aspect-based), JAJML (JastAdd-based),
JIR (DOM-like model of specified code), JML3
(Eclipse JDT-based), JMLEclipse (JDT-based also),
OpenJML (OpenJDK-based), JML4 (JDT-based),
JML6 (Java-annotation + JDT-based)

• OpenJML and JavaContract are the cleanest
foundation for research tools

The Future of JML
• The future of JML is up to the community, which can

easily include you.

• The language evolves due to community need and
research opportunity.

• Tools get written and maintained because they are
necessary for research, experimentation, and teaching.

• Personally, my group will continue to work on
maintaining ESC/Java2, ADLs for Java (BON),
refinement to/from JML (Beetlz), releasing a new
Mobius PVE, finishing OpenJML, new specification and
reasoning constructs for OO systems, lots of case
studies, and writing “The JML Book” and “Dependable
Software Engineering” with colleagues.

