The Use of ML in
Embedded Real-Time

Systems

Joseph Kiniry
Technical University of Denmark

JTRES 2012
24 October 2012

I

Acknowledgements

® Some content based on an OOPSLA
tutorial by: Gary T. Leavens, Curtis Clifton,

Hridesh Rajan, and Robby

® which in turn was based on a CAV tutorial
by: Gary T. Leavens, Joseph R. Kiniry, and
Erik Poll

® which in turn was based on ECOOQOP,
ETAPS, FM, FMCO, and TOOLS tutorials by
some of the above and: David Cok, Fintan
Fairmichael, and Dan Zimmerman

This Talk

® 3 bit of a Java Modeling Language tutorial

® (to help all of you who are using JML in
your research and talks not have to re-
introduce |JML in each talk and to
proselytize a bit about the language)

® details about constructs relevant to
specifying and reasoning about RT Java

® (some advanced facets of the language)
® identification of research opportunities

® (try to be visionary and inspirational)

The Java Modeling
Language (JML)

® Today: ® Ongoing:
® formal ® mechanized semantics
® sequential ® multithreading
® functional behavior ® temporal logic
® mathematical models ® resources
® Java |.4,]avaCard, ® Java |.5 and later

Personal Java, etc.

JML's Goals

usable by and useful for “normal” Java
programmers

JML syntax is an extension of Java’s syntax

practical and effective for detailed model-
based designs

useful for specifying existing code or
performing design-by-contract

support a wide range of tools

Detailed Design
Specification

® |ML handles: ® |ML does not handle:
® inter-module ® user interface
interfaces

® architecture

® classes and
interfaces ® dataflow

® fields (data) ® design patterns

® methods (behavior)

Basic Approach

® Floyd/Hoare-style specifications (contracts)

® method pre- and postconditions

® preconditions are client obligations

® postconditions are supplier obligations
® class and object invariants

® invariants must hold during quiescence

® ..and then add a load of features necessary
to specify programs in an OO language as
rich (and messy, and complex) as Java

A First ML
Specification Example

public class ArrayOps { field specification

}

private /x@ spec_public @/ Object[] a;

//@ public invariant 0 < a.length;

/*@ requires @ < arr.leng
@ ensures this.a == arr; (

public void Int(Object[] arr) {
| this.a = arr; method specification

object invariant

Interface Specification

JML Specification

Syntactic Interface Functional Behavior

Java Code

Interface Specification

/*@ requires @ < arr.length;
@ ensures this.a == arr; @/
public void init(Object[] arr);

requires @ < arr.length;
ensures this.a == arr;

public void init(Object[] arr);

public void init(Object[] arr)
{ this.a = arr; }

Advanced Features

® specifications that include just pre- and postconditions and invariants
are just the tip of the iceberg

® 23 variety of convenience annotations are available for common
specification patterns

® non-null default semantics, non-null elements in collections, strong
validity of expressions, specification lifting for fields; initial state and
history constraints; redundant specifications; exceptional
termination; informal specifications; freshness; purity; examples; set
comprehension; concurrency patterns

® a multitude of concepts that support rich specifications also exist

® lightweight vs. heavyweight specs; privacy modifiers and visibility;
instance vs. static specs; alias control via the universe type system;
data refinement; datagroups; heap access and reachability; first-order
quantifiers and boolean logic operators; generalized quantifiers; type
operators; loop annotations; assumptions and assertions; axioms;
several models of arithmetic; non-termination; frame axioms

Advanced Example(s)

// The classic Bag of integers example
int extractMin() {

class Bag { int m = Integer.MAX_VALUE;
int[] a = new int [0]; int mindex = 0;
int n; if (a !'= null) {
for (int i = 1; i <= n; i++) {
Bag(int[] i) { if (alil < m) {
n = i.length; mindex = 1i;
a = new int[n]; m= alil;
System.arraycopy(i, 0, ¥
a, 0, n); }
} n——:
almindex] = aln];
return m;
} else {
return 0;
}
}

}

full, basic

el Lightweight Specs
specification
notice the default abstraction of

class Bag { :
non-null semantics “empty-ness”

int[] a;
int n;
//@ invariant @ <= n & n <= a.length;

//@ public ghost boolean empty; int m = Integer.MAX_VALUE;

//@ invariant empty == (n == 0); int mindex = 0;
for (int i = 0; 1 < n; i++) {
//@ modifies a, n; if (alil < m) {
//@ ensures this.empty == (input.length == 0); mindex = 1i;
public_/*@ pure x/ Bag(int[] input) { m=alil; in-line assertions for
n = input.length; . . b
a = new int[n]: introduce purity validation and verification
System.arraycopy(input, @, a, @, n); n——;
//@ set empty = n == 0; //@ set empty = n == 0;
} //@ assert empty == (n == 0);
almindex] = aln];
//@ ensures \result == empty; return m;
public /x@ pure @/ boolean isEmpty() { I
return n == 0;
} new methods to

//@ requires lempty: frame axioms for

//@ modifies empty;
//@ modifies n, alx];
public int extractMin() {

support specification

hon-pure methods abstraction

add Javadocs

for humans

/*%k
A bag of integers.

@author Joe Kiniry (kiniry@acm.org)
@version JTRES-23102012
*/
class Bag {
/*x A representation of the elements of
this bag of integers. */
int[] my_contents;
/**x This size of this bag. */ 1‘{
int my_bag_size;
/*@ invariant 0 <= my_bag_size &&
my_bag_size <= my_contents.length; *x/
//@ public ghost boolean empty;
//@ invariant empty == (my_bag_size == 0);

/ k% *

* Build a new bag, copying

* <code>input</code> as its initial

* contents.

* @param the_input the initial contents
* of the new bag. *x/

//@ assignable my_contents, my_bag_size;

>k
*
* @author The DEC SRC ESC/Java research teams
*
*

Document It!

on formal

tighten specs

parameters

/*@ ensures empty ==
(the_input.length =={0); =/
public /*@ pure @/ Bag(final int[]
the_input) { ...

/*x @return if this bag is empty. *x/ 1.{
//@ ensures \result == empty;
public boolean isEmpty() { ... }

/*x @return the minimum value in this bag
and remove it from the bag. *x/

//@ requires !empty;

//@ modifies empty;

//@ modifies my_bag_size, my_contents[x];

public int extractMin() { ... }

hide unnecessary methods and

method bodies henceforth

¥

introduce

model
variables

tighten

visibility

use

heavyweight
specs

Lift Abstraction s

Javadocs
henceforth

class Bag {
private /x@ spec_public %/ int[] my_contents;

private /*@ spec_public %/ int my_bag_size;*
/*@ invariant @ <= my_bag_size &&
my_bag_size <= my_contents.length; x/

//@ public ghost boolean empty;*
//@ invariant empty == (my_bag_size == 0);

//@ public behavior
//@ assignable my_bag_size, my_contents, empty;
//@ ensures empty == (the_input.length == 0);

//@ signals (Exception) false;

public /x@ pure @/ Bag(final int[] the_input) specify

{ ...} :
exceptional

//@ public behavior 5

//@ ensures \result == empty; behavior

//@ signals (Exception) false;

public /*@ pure */ boolean isEmpty() { ... }

//@ public behavior .
//@ requires !empty;

//@ assignable empty, my_contenﬁi[*], my_bag_size;

//@ signals (Exception) false;
public int extractMin() { ... }

introduce

datagroups

Data Abstraction

class Bag {

private /*x@ spec_public *x/ int[] my_contents;
//@ in objectState;
//@ maps my_contents[x] \into objectState; Ei(j(j (jzftzl

private /*x@ spec_public */ int my_bag_size; reﬁnement
//@ in objectState;
/*@ invariant @ <= my_bag_size &&
my_bag_size <= my_contents. length; *x/

//@ public ghost boolean empty; in objectState;
//@ invariant empty == (my_bag_size == 0);

//@ public behavior *
//@ assignable objectState;
//@ ensures empty == (the_input.length == 0);

//@ signals (Exception) false;
public /*@ pure */ Bag(final int[] the_input)

{ ...}
//@ public behavior *
//@ requires !empty;
//@ assignable objectState; NOW SuppOI‘tS
//@ signals (Exception) false; " " -
public int extractiin() { ... } [oieljileriule] g\ o) (I d o]y

use universe

Control Aliasing

class Bag {
private /@ \rep */ int[] my_contents; |”63fir]€3
//@ in objectState; SPeCiﬁcation
visibility

type system

//@ maps my_contents[x] \into objectState;

private /*@ \rep */ int my_bag_size;
//@ in objectState;
/*@ private invariant 0 <= my_bag_size &&
my_bag_size <= my_contents.length; *x/

//@ public model boolean empty; in objectState;
//@ represents empty <- isEmpty();
//@ public invariant empty <==> (my_bag_size == 0);

//@ public behavior

//@ assignable objectState; use
//@ ensures isEmpty() <==> (the_input.length == 0); .
//@ signals (Exception) false; |OgICa|

public /*@ pure *x/ Bag(final int[] the_input) { Opel"atOI‘S
my_bag_size = the_input. length;
my_contents = new /x@ rep x/ int[my_bag_size]; 1.{
System.arraycopy(the_input, 0,
my_contents, 0, my_bag_size);

Specs for

class Bag {
private /%@ \rep *x/ int[] my_contents;
//@ in objectState;
//@ maps my_contents[*] \into objectState;

private /*@ \rep *x/ int my_bag_size;
//@ in objectState;
/*@ private invariant @ <= my_bag_size &&

my_bag_size <= my_contents.length; *x/

//@ public model boolean empty; in objectState;
//@ represents empty <- isEmpty();
//@ public invariant empty <==> (my_bag_size == 0);

//@ public behavior

//@ assignable objectState;

//@ ensures isEmpty() <==> (the_input.length == 0);
//@ ensures my_contents.equal(the_input);

//@ ensures my_bag_size == the_input.length;

//@ signals (Exception) false;

public /*@ pure x/ Bag(final int[] the_input) { ... }

fully specify

interface behavior

Reasoning

//@ public behavior

//@ requires !empty;
//@ assignable objectState;
//@ ensures my_bag_size == \old(my_bag_size - 1);
//@ ensures (x one smallest element is removed x);
/*@ ensures (\exists SortedSet set, int smallest,
List<int> list;
list = Arrays.asList(my_contents) ==>
set = new TreeSet(list) ==>
smallest = s.first();
Collections.frequency(list, smallest) ==
\old(Collections.frequency(list,
smallest) - 1)); *x/
//@ signals (Exception) false;
public int extractMin() { ... }
¥

Internal Specs for Reasoning

public int extractMin() {

int m = Integer.MAX_VALUE;

int mindex = 0;

/*@ maintaining m != Integer.MAX_VALUE ==>
(\forall int j; 0 <= j & j < i1 & j '= mindex;
my_contents[j] < m & my_contents[mindex] == m);

*/
//@ decreasing my_bag_size - i;
for (int i = 0; i < my_bag_size; i++) {
if (my_contents[i] < m) {
mindex = 1;

m = my_contents[i]; add IOOP
; specifications

5
my_bag_size——;

my_contents[mindex] = my_contents[my_bag_size];
return m;

Many Tools, One Language

specification
generation

jmldoc, OpenJML
Daik Houdini ESC/Java2, Open)ML,
imlunit, JMLunitNG, afconp rotdin! J";}I’iE X pen)
KeYTestGen J clpse

public class ArrayOps {
< private /x@ spec_public @/ Object[] a;
unlt teStS &//@ public invariant 0 < a.length; h data' traces

/*@ requires @ < arr.length;

ijC;jm|4C, Q@ ensures 1.:h:?.s.a == arr; o/ Daikon
JMI—EC“PSG, OpenJM public void init(Object[] arr) {
ESC/Java2, KeY, Mobius,

thlS a = arr;
Jack JIVE, Krakatoa, LOOP
class file
BONCc

correctness proof
BONCc, Beetlz

architecture requirements
specification tracing

Bandara

model checking

Complementary Tools

® different strengths
® runtime checking exhibits real errors
® static checking ensures better coverage

® verification provides strong guarantees

Typical Methodology

|. runtime checker (program and tests)
2. extended static checking

3. verification

Rigorous Methodology

|. perform formal analysis and high-level design (e.g., with
UML or BON)

2. generate or hand-write detailed design in JML (Beetlz)

3. check soundness and measure quality of specifications
using static checkers (Metrics, ESC/Java2)

4. generate unit tests (jmlunit, JMLunitNG, KeY TestGen)
5. use runtime checker during validation and execution

6. perform syntactic and semantic static analysis
(CheckStyle, PMD, FindBugs, Metrics, ESC/Java2, Beetlz,
AutoGrader)

/. perform verification (Jack, JIVE, Krakatoa, Mobius PVE,
KeY, CHARGE!)

Interest in |ML

® dozens of tools
® state-of-the-art specification language
® large and open research community
® nearly 30 research groups worldwide
® over 200 research papers published

® dozens of PhD dissertations

See jmlspecs.org

Advantages to |ML

® reuse language design
® case communication with other researchers

® share customers for science and engineering

Join us!

More at www.jmlspecs.org

® documents
® “Design by Contract with JML”
® “An overview of ML tools and applications”
® “Preliminary Design of |ML”

® “JMLs Rich, Inherited Specifications for Behavioral
Subtypes”

® “JML Reference Manual”
e Also:
® Examples, teaching material.
® Downloads, SourceForge project.

® Links to papers, etc.

JML's Relevance to RT Java

® existing APl specifications

® specification-only constructs
® shost fields
® model fields, methods, classes, and programs
® native models

® memory-related specification constructs

® resource specifications

Existing APl Specs

® existing API specs for the |DK are poor, but for
JavaCard and RT Java are quite good

® API specifications are written lazily and in bursts during
JML “Specathons” run by myself and Zimmerman

® a novel spec-writing process and tool support has
been published in TAP’12

® moderately complete specification exist for few core
JDK packages (java.[io, lang, util])

® poor specs exist for other core JDK packages
(java.[awt, math, net, security, sql])

® complete specs exist for javacard.framework and
javax.realtime thanks to Nijmegen researchers et al.

Ghosts

ghost fields and variables are useful for explicitly
modeling explicit specification-only data

they are used inside of assertions like contracts and
invariants

their value is explicitly updated using the set statement

//@ public model boolean empty; in objectState;
//@ represents empty <- isEmpty();
//@ public invariant empty <==> (my_bag_size == 0);

recall:

and inside of extractMin()

//@ set empty = n == 0;
//@ assert empty == (n == 0);

Models

® model fields, methods, classes, and programs are
extremely useful for modeling platform constructs
and algorithms

® model programs are used to specify abstract
algorithms and a concrete method’s execution
must refines its model program

® model classes and methods are useful for
abstracting domain concepts into a specification

® c.g., novel memory models like in RT Java

Native Models

® native models permit one to define the semantics
of a JML model in another formalism/tool

® some JML model classes (pure, functional,
executable,ADT-based sets, lists, bags, etc.) have
native models expressed in Cogq, Isabelle, or PVS

® some |DK concurrency constructs have native
models expressed in LTL or PVS

® the Java memory model has native models

expressed in rich heap models in various HOLs
and SMT

Memory-related Specs

® reach expressions permit one to specify

//@
//@
//@
//@
//@
//@
//@

and reason about the set of objects
reachable from a reference within a heap

public invariant
(\forall Object o, p, MemoryArea a, b;
a = MemoryArea.getMemoryArea(o) &
b = MemoryArea.getMemoryArea(p) & a !'= b;
(a instanceof ImmortalMemory) &
(b instanceof HeapMemory) ==>
reach(b).intersection(reach(a)).isEmpty());

Resource Specs:
Stack Depth

¢ measured_by permits one to specify the
measure of recursion to reason about
termination, a la PVS’s measure construct,

except limits to the integer type

factorial(x: nat): RECURSIVE nat =
IF x = @ THEN 1 ELSE x % factorial(x — 1) ENDIF

MEASURE (LAMBDA (x: nat): x)

//@ measured_by x;
int factorial(int x) {
if (x == 0) return 1;
else return x x factorial(x-1);

}

Primitive Space
Complexity

e working space is used to specify the
maximum amount of heap space, in bytes,
used by a method call or constructor

//@ public behavior

//@
//@
//@
//@
//@
//@

assignable objectState;
ensures isEmpty() <==> (the_input.length == 0);
signals (Exception) false;
working_space 4 x the_input.length;
working_space_redundantly

\working space(\type(int)) * the_input.length;

public Bag(final int[] the_input)

Space for an Object

® a space specification describes the

amount of space consumed by an object
(much like sizeof in the C family of
languages)

//@ public behavior

//@
//@
//@
//@
//@

assignable objectState;

ensures isEmpty() <==> (the_input.length == 0);
ensures space(my_contents) == space(the_input);
signals (Exception) false;

working_space 4 x the_input.length;

public Bag(final int[] the_input)

Primitive Time Complexity

® the duration clause is used to specify the
maximum number of virtual machine cycles a
method (not counting garbage collection time)

® unfortunately, general-purpose VM cycle time
for instructions has never been specified in the
Java VM specification

® duration clause parameter is of type long, not
an algebraic expression (not big-O notation)

Research Opportunities

® tool development and maintenance
® extensible tool architecture

® integration with modern IDEs

® unification of tools

® integration with Java annotations

® domain-specific language extensions

® via new models and language extensions

JML Models and
Extensions for RT Java

® RT Java deserves rich native model-based
specifications for:

® memory-related classes using a rich
abstracted heap model

® threads, scheduling, and synchronization
® time, clocks, and timers

® asynchrony

Java Level X Extensions
for RT Java

® this community should propose and
experiment with new JML annotations for:

® time complexity that understands big-O
(and related) notations

® memory types

® timers and asynchronous events

® ACET and WCET scheduling

The State of |ML

® many experimental compilers are available
for “modern” Java

e AJML2 (aspect-based), JAJML (JastAdd-based),
JIR (DOM-like model of specified code), JML3
(Eclipse JDT-based), JMLEclipse (JDT-based also),
Open]ML (Open]|DK-based), JML4 (JDT-based),

JML6 (Java-annotation + JDT-based)

® Open)JML and JavaContract are the cleanest
foundation for research tools

The Future of ML

The future of |ML is up to the community, which can
easily include you.

The language evolves due to community need and
research opportunity.

Tools get written and maintained because they are
necessary for research, experimentation, and teaching.

Personally, my group will continue to work on
maintaining ESC/Java2, ADLs for Java (BON),
refinement to/from |JML (Beetlz), releasing a new
Mobius PVE, finishing Open]ML, new specification and
reasoning constructs for OO systems, lots of case
studies, and writing ““The JML Book” and “Dependable
Software Engineering” with colleagues.

