
Nationaal Lucht- en Ruimtevaartlaboratorium – National Aerospace Laboratory NLR

Using CHARTER tools to develop a Safety-Critical
Avionics Application in Java

JTRES 2012, Copenhagen, Denmark, 24-26 October 2012

Gosse Wedzinga

Klaas Wiegmink

2

Outline

 Avionics systems & challenges
 Increasing role of software
 Architectural evolution
 Certification aspects of avionics software

 CHARTER approach
 Overview
 CHARTER software life-cycle

 Evaluation of CHARTER approach
 Tools evaluated
 Safety-critical avionics application
 Assessment

 Concluding remarks

Avionics systems

 Avionics literally means “aviation electronics”

 Comprises all electronic systems designed for use on an
aircraft, artificial satellites, and spacecraft

 An avionics system is safety-critical when its failure could
result in loss of life or significant damage

 Present day avionics systems are increasingly based on
computers and many functions are realized in software

3

Architectural evolution

Federated architecture

 One computer system for
each unique function

 Line Replaceable Units (LRU’s)
 Unique combination of hardware

and software

 Dedicated interconnections
 Point to (multi)point

 Intrinsic functional isolation

Integrated Modular Avionics

 One computer system for
multiple distinct functions

 Generic processing modules
 Independence between application

and execution platform

 Packet-switched network
 Virtual links

 Functional isolation provided
by time & memory partitioning

4

NetworkV
H
F

F
M
S

I
N
S

A
p

p
lic

a
tio

n

A
p

p
lic

a
tio

n

A
p

p
lic

a
tio

n

OS

Hardware

Architectural evolution

Impact of IMA

 Advantages
 Reduced space, weight, and power (SWaP)
 Application portability

– Independent component development (applications,
modules)

– Reduced obsolescence issues
 Reduced spares inventory
 ...

 Challenges
 Integration responsibility
 IPR issues

– Multiple suppliers on one platform
 Complexity of configuration

– Tables define resource allocation to applications

5

Certification aspects of avionics software

 EUROCAE document ED-12: Software Considerations in
Airborne Systems and Equipment Certification

 Guidance for production of software for airborne systems
– Objectives of software life-cycle processes
– Activities for satisfying the objectives
– Descriptions of the compliance evidence

 Emphasis on development assurance
– Requirements-based development
– Verification (incl. testing)

 Increasing effort with increasing software level
– Software level is input from system safety assessment

 Revision C (January 2012)
 New supplements, e.g., object-oriented technologies,

model-based development, formal verification

6

Certification aspects of avionics software

 ED-12 Software levels

7

Level
Aircraft failure
condition

Meaning

A Catastrophic Loss of airplane, multiple fatalities

B Hazardous
Damage to airplane, excessive workload,
some passengers injured (incl. fatal)

C Major
Reduction in airplane capabilities,
increased workload, passengers
distressed/injured

D Minor
Little effect on operation of airplane and
crew workload, some physical discomfort

E No effect
No effect on operation of airplane or crew
workload

CHARTER approach

Critical and High Assurance Requirements Transformed
through Engineering Rigour

2009 - 2012

8

CHARTER project overview

Goal

 Improve software development process for safety-critical
embedded systems: reducing cost & increasing quality

Approach

 Apply model-based development

 Use as programming language Real-Time Java augmented with
Java Modeling Language (JML) specifications

 Apply Rule-Driven Transformation (RDT) technique
 Transform UML model elements into Java source code
 Transform bytecode into machine code
 Potentially certifiable

 Provide tools for formal verification and automated test case
generation

9

CHARTER software life-cycle

10

Software

Design

Software

Coding
Integration

Software

Requirements

Software Reviews & Analyses Software Testing

Artisan

Studio

ResAna KeYFloat VerCors KeYTestGen

Artisan

Studio

JamaicaVM

Builder

Code

Generator

Software Development

Software Verification

javac

JUnit

Tools

Tools

Evaluation of CHARTER approach

11

Tool Activity Evaluated

Artisan Studio

Code Generator Add-in
Coding

JamaicaVM Builder Building *

ResAna

Loop bound analysis

Heap consumption analysis

Stack size analysis

-

VerCors
Verification of concurrent data
structures

-

KeYFloat Analysis of floating point computations -

KeYTestGen Test case generation

* Machine code generator was implemented for the ARM architecture

Safety-critical avionics application

Environmental Control System (ECS)

12

23

23

Air
Conditioning

Panel

Air
Conditioning

Page

Zone
Controller

Pack
Controller

Mixer and
Recirculation

Pack

Engine

ECS Plant

Zone

Safety-critical avionics application

ECS Demonstrator Configuration

13

Control and
Display

RT Java ECS Application

JamaicaVM

ARINC-653 RTOS

PPC-based HW platform

ECS Avionics System

ECS Plant
Simulator

Network

Assessment

 Attribute: Productivity
 Metric: Effort in person-hours to complete each life-cycle

process

 Baseline
 Total effort for conventional development

– Reference data from three similar projects coded in C
– Establish average productivity for C
– Similar number of Lines-of-Code in C and Java

 Effort for each life-cycle process
– Estimated percentage of total development effort

 CHARTER
 Obtained from NLR administrative accounting system
 Made corrections for

– Omitted activities from actual ED-12 processes (+)
– Unexpected activities (-)

14

Assessment

 Comparison of efforts (person-hours)

15

Process Baseline CHARTER % Change

Software Requirements 105.2 112.9 7.3

Software Design 210.4 178.5 -15.2

Software Coding 210.4 176.1 -16.3

Integration 105.2 116.5 10.7

Software Reviews &
Analyses

63.1 94.9 50.4

Low-Level Software
Testing

252.5 69.5 -72.5

Total 946.8 748.4 -21.0

Assessment

 Software design (-15%)
 Unexpected: JML specification more effort (+)

 Software coding (-15%)
 Code generation (-)
 Use of Java (-)
 Inelegant editing (+)
 May include design effort (+)

 Software reviews & analyses (+50%)
 Application of formal verification (ResAna)
 Expected to earn (partially) back in other processes

 Low-level software testing (-70%)
 Not all test cases could be generated by KeYTestGen

 Total (-20%)
 Accounts only for processes supported by CHARTER tools

16

Assessment

Cautions

 Estimated baseline figures
 NLR develops a wide variety of systems

– Difficult to compare
– Significant deviation in baseline metrics

 Effort for each life-cycle process estimated using %

 Measured CHARTER figures
 Errors in recording hours spent
 Demonstrator is on a single sample

 Absolute value of figures is limited but figures do
indicate productivity improvement using CHARTER tools

 Demonstrations for other domains show similar tendency

17

Concluding remarks

 CHARTER approach
 Model-based development
 Real-Time Java with Java Modeling Language annotations
 Rule Driven Transformation

– model to source code
– bytecode to machine code

 Tool support for formal verification and low-level testing

 Maturity of development tools at high level
 Based on existing commercial products

 Maturity of verification tools need further improvement
 But potential to reduce effort is acknowledged

 JML as a specification language requires getting used to

 Reduced effort, lower cost, increased quality

 For more info see: http://charterproject.ning.com/

18

19

