
M. Teresa Higuera-Toledano
Universidad Complutense de Madrid Ciudad Universitaria,

Madrid 28040, Spain

This research was supported by Consejería de Educación
de la Comunidad de Madrid, Fondo Europeo de Desarrollo
Regional (FEDER) and Fondo Social Europeo (FSE),
through Research Program S2009/TIC-1468, and by Ministerio
de Educación y Ciencia, through the research grant
TIN2009-.07146.

  Introduction

  Real-Time Java Solutions

  The Real-Time Java Specification

  RTSJ-Based Solutions

  Java Components-based
Solutions

  Distributed Real-Time Java
Issues

  High-Integrity Systems

  Conclusions

History
  1995: Java was introduced for

Sun Microsystems
  1997: several research works

focus on the limits of Java to
execute real-time applications

  1998: PERC
  1999: the NIST document
  2000: the first JSR (Java

Specification Request) for RTSJ
  2002: the JSR-50 for DRTSJ
  2005: the JSR-282 to enhance

RSTJ
  2006: final release of RTSJ 1.0
  2006: the JSR-302 for SCJ
  2011: final draft review of SCJ
  2011: taken again DRTS

Solutions before the
NIST document
  1997-2000

  Real Time Java Threads (Tokuda): provides
real task support and synchronization.

  PERC (Nielsen): provides an original API
with atomic execution of code and
resource negotiation.

  CSP and Transputers: deals with single and
multi-processor environments.

  JavaOS: integrates real-time capabilities in
a Java-based operating system.

  picoJava: runs the Java bytecodes as its
native instruction set.

The NIST document

  Started on december 1999

  A standard Java extension for real-
time applications

  API-based solution and profiles

  Two alternatives:
◦  The Real-Time Core Extesion fpr the Java

Platform (RT-Core)
◦  The Real-Time Specification of Java (RTSJ)

  RT-Core proposses modifications to the Java
language, and it was not well accepted

  Profiles: distributed, safety critical,
business critical …

  The Real-time
Specification of Java

  The Distributed Real-
time Specification of
Java

  The Certiable Safety-
Critical Java

Problems
  Time values and clocks

  Accessing underlying hardware

  Scheduling

  Synchronization

  Asynchronous event handling

  Dynamic memory
management

  Resource management

Problems RTSJ solutions
  Time values and clocks

  Accessing underlying hardware

  Scheduling

  Synchronization

  Asynchronous event handling

  Dynamic memory
management

  Resource management

  HighResolutionTime class

  RawMemoryAccess class

  RealtimeThread class

  Synchronized keyword

  AsyncEvent and AsyncEventHandler
classes

  MemoryArea abstract class and
RT-GC

  MemoryParameters and Scheduling
Parameters

Meeting in Madrid - 22/04/2005 9

  Timesys RI

  OVM (Purdue)

  PERC (AONIX)

  Jamaica (AICAS)

  McKinack (SUN)

  Websphere (IBM)

  JOP

  JRate

Meeting in Madrid - 22/04/2005 10

  To avoid the garbage collector we can only
use ScopedMemory and ImmortalMemory.
◦  objects within the heap or immortal cannot contain

references to objects in scoped memory (RTSJ)
◦  objects within a scoped region cannot contain

external references to objects within a non-outer
scoped memory (RTSJ)

  Programing with scoped
regions is error-prone

  Still an open research
issue in JSR-286

  Besides guaranteeing the functional behavior of a specific
component, the composition must also guarantee that the
communication, synchronization and timing properties of
the components are time-analyzable.

  The development RT components which can be run on
different HW platforms is complicate because different
timing characteristics of different platforms.

  A RT component should provide the following information:
◦  Memory requirements –
◦  WCET test cases - WCET for a particular processor family.
◦  Dependencies – Describing dependencies on other components
◦  Environment assumptions - in which the component operates, for

example the processor family.

 Soleil
(INRIA)

 RTComposer
(University of Pennsylvania)

 RT-OSGi
(University of York)

Basic goal of the
framework

  A systematic architecture design

  Automatic generation of RTSJ
code

  The ThreadDomain component
represent the RealTimeThread
hierarchy (i.e., RealTimeThread and
NoHeapRealTimeThread)

  The MemoryArea component
represent the MemoryArea hierarchy
(i.e., ImmortalMemoryArea, HeapMemory,
and ScopedMemory)

  The functional architecture is
obtained as a combination of The
ThreadDomain and MemoryArea
components.

Hierarchical scheduling
approach

RT-Component RT-Component

MACRO-SCHEDULER
Assignment of
time slot

MICRO-SCHEDULER

 RM, EDF, …

CPU

INTERRUPTS
HANDLERS
High priority

BACKGROUND
COMPUTATIONS
Low priority

  Two scheduling levels:

◦  A standard task scheduler
is used for inter-slot
scheduling

◦  An automata-based
scheduler is used for intra-
slot scheduling

Dynamic Configuration

  Combines OGSi and RTSJ real-
time thread, priority-based
scheduling and real-time GC

  Provides:
◦  An admission control protocol.
◦  A priority assignment approach

supporting temporal isolation.
◦  A hierarchical scheduling.

  The combination of these
characteristics guarantees
safety update of components

  Memory isolation has not been
still addressed

Problems

  RTSJ is focused on
centralized

  Since 2000 inactive

  Programming model:
◦  networked (asynchronous

messages)
◦  control flow (method

invocation)
◦  data flow(publish/subscribe)

Problems DRTSJ
extends RMI in RTSJ

  RTSJ is focused on
centralized

  From 2000 inactive

  Programming model:
◦  networked (asynchronous

messages)
◦  control flow (method

invocation)
◦  data flow(publish/subscribe)

  Distributed (multi-node)
RTSJ

  Taken again in 2011

  To add end to end timelines:
◦  focusses on control flow
◦  RMI, events, thread transfer

of control, and scheduling

  Profiles for RT-RMI
(Polytechnic University of Madrid)

 Compadres
(University of California)

 DREQUIEMI
(Carlos III University)

Three different
profiles:

  RMI-HRT for safety critical systems,
requires highly deterministic behavior.
Deadlines misses can cost human lives
or cause fatal errors (i.e., hard real-time
systems)

  RMI-Quality of Service for efficient and
robust system, which anomalous
behavior can cause financial cost (i.e.,
soft real-time systems)

  OSGi-based solution for flexible business
systems (e.g., multimedia systems,
ambient intelligent). It considers RT-GC,
and does not consider asynchronous
interrupt exceptions, nor asynchronous
event handling.

AComponent
Middleware Framework

  Components for Distributed
Real-Time Embedded RTSJ

  Components connected by ports
that communicate through
strongly-typed objects

  Abstracts away RTSJ memory
management complexity

  Compiler that automatically
generates the scoped memory
architecture for components

A Middleware
Framework

  It allows to support the level L1
od DRTSJ

  It incorporates some DRTSJ L2
elements

  It is based on RMI having
influences from RT-CORBA

  It offers four services:
◦  A stub/skeleton allowing remote object

invocation
◦  A distributed garbage collector
◦  A naming service for white pages
◦  A synch/event service for data-flow

communication

Problems

  Started on 2006

  Safety critical applications

  Validation:
◦  standards DO-178B / ED-12B
◦  formal models,schedulability

analysis

  Requires transformation
from bytecodes to target
machine Programming
model

Problems A RTSJ
Subset for critical system

  Started on 2006

  Safety critical applications

  Validation:
◦  standards DO-178B / ED-12B
◦  formal models,
◦  schedulability analysis

  Requires transformation
from bytecodes to target
machine Programming
model

  Finished on 2011

  Minimal set of features:
◦  static resource allocation and

usage
◦  minimal temporal conflicts
◦  without dynamic loading
◦  Without GC

  It is expected that this JSR
will result in an ISO
standard

 RMI-HRT Profile (HIJA)

  PERC and OSGi

Meeting in Madrid - 22/04/2005 25

 Computational Model based on HRTJ:
◦ based on pre-emptive priority-based scheduling
◦  threads or event handlers (periodic or sporadic)
◦ priority ceiling inheritance protocol
◦  two phases: initialization and mission

  Linear Model:

OSGi Core

OSGi-SRT OSGi-HRT

OSGi-Enterprise

Common OSGi
Platform

RTSJ OSGi-based
Profiles

  RTSJ is the standard Java extension adding real-
time capabilities to the Java environment

  It introduces the MemoryArea class; an original
mechanism that combines pre-allocates spaces
with the GC.
◦  Scoped memory present some difficulties regarding their use

  The DRSJ profile supports the development of
distributed Java programs with real-time
restrictions

  RT Embedded systems interact with the real-world
◦  must be dynamically adaptive
◦  must be capable of being modified and updated at run-time

  We give an overview of existing RTSJ components
based solutions

  The SCJS profile supports the development of
programs that must be certified. This specification
includes annotations and rules to check statically
the semantic program.

