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History 
  1995: Java was introduced for 

Sun Microsystems  
  1997: several research works 

focus on the limits of Java to 
execute real-time applications 

  1998: PERC  
  1999: the NIST document 
  2000: the first JSR (Java 

Specification Request) for RTSJ 
  2002: the JSR-50 for DRTSJ 
  2005: the JSR-282 to enhance 

RSTJ 
  2006: final release of RTSJ 1.0 
  2006: the JSR-302 for SCJ 
  2011: final draft review of SCJ 
  2011: taken again DRTS 



Solutions before the 
NIST document 
  1997-2000 

  Real Time Java Threads (Tokuda): provides 
real task support and synchronization. 

  PERC (Nielsen): provides an original API 
with atomic execution of code and 
resource  negotiation. 

  CSP and Transputers: deals with single and 
multi-processor environments. 

  JavaOS: integrates real-time capabilities in 
a Java-based operating system. 

  picoJava: runs the Java bytecodes as its 
native instruction set. 



The NIST document 

  Started on december 1999 

  A standard Java extension for real-
time applications 

  API-based solution and profiles 

  Two alternatives: 
◦  The Real-Time Core Extesion fpr the Java 

Platform (RT-Core)  
◦  The Real-Time Specification of Java (RTSJ) 

  RT-Core proposses modifications to the Java 
language, and it was not well accepted 

  Profiles: distributed, safety critical, 
business critical  … 



  The Real-time 
Specification of  Java 

  The Distributed Real-
time Specification of 
Java 

  The Certiable Safety-
Critical Java 



Problems 
  Time values and clocks 

  Accessing underlying hardware 

  Scheduling 

  Synchronization 

  Asynchronous event handling 

  Dynamic memory 
management 

  Resource management 



Problems RTSJ solutions 
  Time values and clocks 

  Accessing underlying hardware 

  Scheduling 

  Synchronization 

  Asynchronous event handling 

  Dynamic memory 
management 

  Resource management 

  HighResolutionTime class 

  RawMemoryAccess class 

  RealtimeThread class 

  Synchronized keyword 

  AsyncEvent and AsyncEventHandler 
classes 

  MemoryArea abstract class  and 
RT-GC 

  MemoryParameters and Scheduling 
Parameters  
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  Timesys RI 

  OVM (Purdue) 

  PERC (AONIX) 

  Jamaica (AICAS) 

  McKinack (SUN) 

  Websphere (IBM) 

  JOP 

  JRate 
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  To avoid the garbage collector we can only 
use ScopedMemory and ImmortalMemory. 
◦  objects within the heap or immortal cannot contain 

references to objects in scoped memory (RTSJ) 
◦  objects within a scoped region cannot contain 

external references to objects within a non-outer 
scoped memory (RTSJ) 

  Programing with scoped 
regions is error-prone 

  Still an open research 
issue in JSR-286 



  Besides guaranteeing the functional behavior of a specific 
component, the composition must also guarantee that the 
communication, synchronization and timing properties of 
the components are time-analyzable. 

  The development RT components which can be run on 
different HW platforms is complicate because different 
timing characteristics of different platforms. 

  A RT component should provide  the following information: 
◦  Memory requirements –  
◦  WCET test cases - WCET for a particular processor family. 
◦  Dependencies – Describing dependencies on other components 
◦  Environment assumptions - in which the component operates, for 

example the processor family. 



 Soleil  
(INRIA) 

 RTComposer 
(University of Pennsylvania) 

 RT-OSGi  
(University of York) 



Basic goal of the 
framework 

  A systematic architecture design 

  Automatic generation of RTSJ 
code 

  The ThreadDomain component 
represent the RealTimeThread 
hierarchy (i.e., RealTimeThread and 
NoHeapRealTimeThread) 

  The MemoryArea component 
represent the MemoryArea hierarchy 
(i.e., ImmortalMemoryArea, HeapMemory,  
and ScopedMemory)  

  The functional architecture is 
obtained as a combination of The 
ThreadDomain and MemoryArea 
components. 



Hierarchical scheduling 
approach 

RT-Component RT-Component 

MACRO-SCHEDULER 
Assignment of  
time slot 

MICRO-SCHEDULER 

   RM, EDF, … 

CPU 

INTERRUPTS 
HANDLERS 
High priority 

BACKGROUND 
COMPUTATIONS 
Low priority 

  Two scheduling levels:  

◦  A standard task scheduler 
is used for inter-slot 
scheduling   

◦  An automata-based 
scheduler is used for intra-
slot scheduling 



Dynamic Configuration 

  Combines OGSi and RTSJ real-
time thread, priority-based 
scheduling and real-time GC 

  Provides: 
◦  An admission control protocol. 
◦  A priority assignment approach 

supporting temporal isolation. 
◦  A hierarchical scheduling. 

  The combination of these 
characteristics guarantees 
safety update of components 

  Memory isolation has not been 
still addressed  



Problems 

  RTSJ is focused on 
centralized 

  Since 2000 inactive 

  Programming model:  
◦  networked (asynchronous 

messages)  
◦  control flow (method 

invocation)  
◦  data flow(publish/subscribe)  



Problems DRTSJ 
extends RMI in RTSJ 

  RTSJ is focused on 
centralized 

  From 2000 inactive 

  Programming model:  
◦  networked (asynchronous 

messages)  
◦  control flow (method 

invocation)  
◦  data flow(publish/subscribe)  

  Distributed (multi-node) 
RTSJ 

  Taken again in 2011 

  To add end to end timelines: 
◦  focusses on control flow  
◦  RMI, events, thread transfer 

of control, and scheduling 



  Profiles for RT-RMI 
(Polytechnic University of Madrid) 

 Compadres 
(University of California) 

 DREQUIEMI  
(Carlos III University) 



Three different 
profiles: 

  RMI-HRT for safety critical systems, 
requires highly deterministic behavior. 
Deadlines misses can cost human lives 
or cause fatal errors (i.e., hard real-time 
systems) 

  RMI-Quality of Service for efficient and 
robust system, which anomalous 
behavior can cause financial cost (i.e., 
soft real-time systems) 

  OSGi-based solution for flexible business 
systems (e.g., multimedia systems, 
ambient intelligent). It considers RT-GC, 
and does not consider asynchronous 
interrupt exceptions, nor asynchronous 
event handling. 



AComponent 
Middleware Framework 

  Components for  Distributed 
Real-Time Embedded RTSJ  

  Components connected by ports 
that communicate through 
strongly-typed objects 

  Abstracts away RTSJ memory 
management complexity  

  Compiler that automatically 
generates the scoped memory 
architecture for components  



A Middleware 
Framework 

  It allows to support the level L1 
od DRTSJ 

  It incorporates some DRTSJ L2 
elements 

  It is based on RMI having 
influences from RT-CORBA 

  It offers four services: 
◦  A stub/skeleton allowing remote object 

invocation  
◦  A distributed garbage collector 
◦  A naming service for white pages 
◦  A synch/event service for data-flow 

communication 



Problems 

  Started on 2006 

  Safety critical applications 

  Validation: 
◦  standards DO-178B / ED-12B 
◦  formal models,schedulability 

analysis 

  Requires transformation 
from bytecodes to target 
machine Programming 
model 



Problems A RTSJ 
Subset for critical system 

  Started on 2006 

  Safety critical applications 

  Validation: 
◦  standards DO-178B / ED-12B 
◦  formal models, 
◦  schedulability analysis 

  Requires transformation 
from bytecodes to target 
machine Programming 
model 

  Finished on 2011 

  Minimal set of features: 
◦  static resource allocation and 

usage 
◦  minimal temporal conflicts 
◦  without dynamic loading 
◦  Without GC 

  It is expected that this JSR 
will result in an ISO 
standard  



 RMI-HRT Profile (HIJA) 

  PERC and OSGi 
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 Computational Model based on HRTJ: 
◦ based on pre-emptive priority-based scheduling 
◦  threads or event handlers (periodic or sporadic) 
◦ priority ceiling inheritance protocol  
◦  two phases: initialization and mission 

  Linear Model: 



OSGi Core 

OSGi-SRT OSGi-HRT 

OSGi-Enterprise 

Common OSGi 
Platform 

RTSJ OSGi-based 
Profiles 



  RTSJ is the standard Java extension adding  real-
time capabilities to the Java environment 

  It introduces the MemoryArea class; an original 
mechanism that combines pre-allocates spaces 
with the GC. 
◦  Scoped memory present some difficulties regarding their use 

  The DRSJ profile supports the development of 
distributed Java programs with real-time 
restrictions 

  RT Embedded systems interact with the real-world 
◦  must be dynamically adaptive 
◦  must be capable of being modified and updated at run-time 

  We give an overview of existing RTSJ components 
based solutions 

  The SCJS profile supports the development of 
programs that must be certified. This specification 
includes annotations and rules to check statically 
the semantic program. 


