
M. Teresa Higuera-Toledano
Universidad Complutense de Madrid Ciudad Universitaria,

Madrid 28040, Spain

This research was supported by Consejería de Educación
de la Comunidad de Madrid, Fondo Europeo de Desarrollo
Regional (FEDER) and Fondo Social Europeo (FSE),
through Research Program S2009/TIC-1468, and by Ministerio
de Educación y Ciencia, through the research grant
TIN2009-.07146.

  Introduction

  Real-Time Java Solutions

  The Real-Time Java Specification

  RTSJ-Based Solutions

  Java Components-based
Solutions

  Distributed Real-Time Java
Issues

  High-Integrity Systems

  Conclusions

History
  1995: Java was introduced for

Sun Microsystems
  1997: several research works

focus on the limits of Java to
execute real-time applications

  1998: PERC
  1999: the NIST document
  2000: the first JSR (Java

Specification Request) for RTSJ
  2002: the JSR-50 for DRTSJ
  2005: the JSR-282 to enhance

RSTJ
  2006: final release of RTSJ 1.0
  2006: the JSR-302 for SCJ
  2011: final draft review of SCJ
  2011: taken again DRTS

Solutions before the
NIST document
  1997-2000

  Real Time Java Threads (Tokuda): provides
real task support and synchronization.

  PERC (Nielsen): provides an original API
with atomic execution of code and
resource negotiation.

  CSP and Transputers: deals with single and
multi-processor environments.

  JavaOS: integrates real-time capabilities in
a Java-based operating system.

  picoJava: runs the Java bytecodes as its
native instruction set.

The NIST document

  Started on december 1999

  A standard Java extension for real-
time applications

  API-based solution and profiles

  Two alternatives:
◦  The Real-Time Core Extesion fpr the Java

Platform (RT-Core)
◦  The Real-Time Specification of Java (RTSJ)

  RT-Core proposses modifications to the Java
language, and it was not well accepted

  Profiles: distributed, safety critical,
business critical …

  The Real-time
Specification of Java

  The Distributed Real-
time Specification of
Java

  The Certiable Safety-
Critical Java

Problems
  Time values and clocks

  Accessing underlying hardware

  Scheduling

  Synchronization

  Asynchronous event handling

  Dynamic memory
management

  Resource management

Problems RTSJ solutions
  Time values and clocks

  Accessing underlying hardware

  Scheduling

  Synchronization

  Asynchronous event handling

  Dynamic memory
management

  Resource management

  HighResolutionTime class

  RawMemoryAccess class

  RealtimeThread class

  Synchronized keyword

  AsyncEvent and AsyncEventHandler
classes

  MemoryArea abstract class and
RT-GC

  MemoryParameters and Scheduling
Parameters

Meeting in Madrid - 22/04/2005 9

  Timesys RI

  OVM (Purdue)

  PERC (AONIX)

  Jamaica (AICAS)

  McKinack (SUN)

  Websphere (IBM)

  JOP

  JRate

Meeting in Madrid - 22/04/2005 10

  To avoid the garbage collector we can only
use ScopedMemory and ImmortalMemory.
◦  objects within the heap or immortal cannot contain

references to objects in scoped memory (RTSJ)
◦  objects within a scoped region cannot contain

external references to objects within a non-outer
scoped memory (RTSJ)

  Programing with scoped
regions is error-prone

  Still an open research
issue in JSR-286

  Besides guaranteeing the functional behavior of a specific
component, the composition must also guarantee that the
communication, synchronization and timing properties of
the components are time-analyzable.

  The development RT components which can be run on
different HW platforms is complicate because different
timing characteristics of different platforms.

  A RT component should provide the following information:
◦  Memory requirements –
◦  WCET test cases - WCET for a particular processor family.
◦  Dependencies – Describing dependencies on other components
◦  Environment assumptions - in which the component operates, for

example the processor family.

 Soleil
(INRIA)

 RTComposer
(University of Pennsylvania)

 RT-OSGi
(University of York)

Basic goal of the
framework

  A systematic architecture design

  Automatic generation of RTSJ
code

  The ThreadDomain component
represent the RealTimeThread
hierarchy (i.e., RealTimeThread and
NoHeapRealTimeThread)

  The MemoryArea component
represent the MemoryArea hierarchy
(i.e., ImmortalMemoryArea, HeapMemory,
and ScopedMemory)

  The functional architecture is
obtained as a combination of The
ThreadDomain and MemoryArea
components.

Hierarchical scheduling
approach

RT-Component RT-Component

MACRO-SCHEDULER
Assignment of
time slot

MICRO-SCHEDULER

 RM, EDF, …

CPU

INTERRUPTS
HANDLERS
High priority

BACKGROUND
COMPUTATIONS
Low priority

  Two scheduling levels:

◦  A standard task scheduler
is used for inter-slot
scheduling

◦  An automata-based
scheduler is used for intra-
slot scheduling

Dynamic Configuration

  Combines OGSi and RTSJ real-
time thread, priority-based
scheduling and real-time GC

  Provides:
◦  An admission control protocol.
◦  A priority assignment approach

supporting temporal isolation.
◦  A hierarchical scheduling.

  The combination of these
characteristics guarantees
safety update of components

  Memory isolation has not been
still addressed

Problems

  RTSJ is focused on
centralized

  Since 2000 inactive

  Programming model:
◦  networked (asynchronous

messages)
◦  control flow (method

invocation)
◦  data flow(publish/subscribe)

Problems DRTSJ
extends RMI in RTSJ

  RTSJ is focused on
centralized

  From 2000 inactive

  Programming model:
◦  networked (asynchronous

messages)
◦  control flow (method

invocation)
◦  data flow(publish/subscribe)

  Distributed (multi-node)
RTSJ

  Taken again in 2011

  To add end to end timelines:
◦  focusses on control flow
◦  RMI, events, thread transfer

of control, and scheduling

  Profiles for RT-RMI
(Polytechnic University of Madrid)

 Compadres
(University of California)

 DREQUIEMI
(Carlos III University)

Three different
profiles:

  RMI-HRT for safety critical systems,
requires highly deterministic behavior.
Deadlines misses can cost human lives
or cause fatal errors (i.e., hard real-time
systems)

  RMI-Quality of Service for efficient and
robust system, which anomalous
behavior can cause financial cost (i.e.,
soft real-time systems)

  OSGi-based solution for flexible business
systems (e.g., multimedia systems,
ambient intelligent). It considers RT-GC,
and does not consider asynchronous
interrupt exceptions, nor asynchronous
event handling.

AComponent
Middleware Framework

  Components for Distributed
Real-Time Embedded RTSJ

  Components connected by ports
that communicate through
strongly-typed objects

  Abstracts away RTSJ memory
management complexity

  Compiler that automatically
generates the scoped memory
architecture for components

A Middleware
Framework

  It allows to support the level L1
od DRTSJ

  It incorporates some DRTSJ L2
elements

  It is based on RMI having
influences from RT-CORBA

  It offers four services:
◦  A stub/skeleton allowing remote object

invocation
◦  A distributed garbage collector
◦  A naming service for white pages
◦  A synch/event service for data-flow

communication

Problems

  Started on 2006

  Safety critical applications

  Validation:
◦  standards DO-178B / ED-12B
◦  formal models,schedulability

analysis

  Requires transformation
from bytecodes to target
machine Programming
model

Problems A RTSJ
Subset for critical system

  Started on 2006

  Safety critical applications

  Validation:
◦  standards DO-178B / ED-12B
◦  formal models,
◦  schedulability analysis

  Requires transformation
from bytecodes to target
machine Programming
model

  Finished on 2011

  Minimal set of features:
◦  static resource allocation and

usage
◦  minimal temporal conflicts
◦  without dynamic loading
◦  Without GC

  It is expected that this JSR
will result in an ISO
standard

 RMI-HRT Profile (HIJA)

  PERC and OSGi

Meeting in Madrid - 22/04/2005 25

 Computational Model based on HRTJ:
◦ based on pre-emptive priority-based scheduling
◦  threads or event handlers (periodic or sporadic)
◦ priority ceiling inheritance protocol
◦  two phases: initialization and mission

  Linear Model:

OSGi Core

OSGi-SRT OSGi-HRT

OSGi-Enterprise

Common OSGi
Platform

RTSJ OSGi-based
Profiles

  RTSJ is the standard Java extension adding real-
time capabilities to the Java environment

  It introduces the MemoryArea class; an original
mechanism that combines pre-allocates spaces
with the GC.
◦  Scoped memory present some difficulties regarding their use

  The DRSJ profile supports the development of
distributed Java programs with real-time
restrictions

  RT Embedded systems interact with the real-world
◦  must be dynamically adaptive
◦  must be capable of being modified and updated at run-time

  We give an overview of existing RTSJ components
based solutions

  The SCJS profile supports the development of
programs that must be certified. This specification
includes annotations and rules to check statically
the semantic program.

