eal-

M. Teresa Higuera-Toledano
Universidad Complutense de Madrid Ciudad Universitaria,

Madrid 28040, Spain

This research was supported by Consejeria de Educacion

de la Comunidad de Madrid, Fondo Europeo de Desarrollo
Regional (FEDER) and Fondo Social Europeo (FSE),

through Research Program S2009/TIC-1468, and by Ministerio
de Educacion y Ciencia, through the research grant
TIN2009-.07146.

—

History

™

1995: Java was introduced for
Sun Microsystems

1997: several research works
focus on the limits of Java to
execute real-time applications

1998: PERC
1999: the NIST document

2000: the first JSR (Java
Specification Request) for RTS]

2002: the JSR-50 for DRTS]

2005: the JSR-282 to enhance
RST]J

2006: final release of RTS] 1.0
2006: the JSR-302 for SCJ
2011: final draft review of SCJ
2011: taken again DRTS

- ~ -~ o~y - ~ —

= e S N D N DD N OO O

Solutions before the
NIST document

1997-2000

Real Time Java Threads (Tokuda): provides
real task support and synchronization.

PERC (Nielsen): provides an original API
with atomic execution of code and

resource negotiation.

CSP and Transputers: deals with single and
multi-processor environments.

JavaOsS: integrates real-time capabilities in
a Java-based operating system.

picoJava: runs the Java bytecodes as its
native instruction set.

Problems

Time values and clocks

Accessing underlying hardware

Scheduling
Synchronization

Asynchronous event handling

Dynamic memory
management

Resource management

— ™ | — o~
H 2) [(23)]]|= o 9

7]
_— e < S~ — K
(] Y () ™ —
A GV N \ __ = SO Y O 2 =

Timesys RI

OVM (Purdue)
PERC (AONIX)
Jamaica (AICAS)
McKinack (SUN)
Websphere (IBM)
JOP

JRate

InnolEnue

= @ \O\SE OO0\ O O

To avoid the garbage collector we can only
use ScopedMemory and ImmortalMemory.

A/

objects within the heap or immortal cannot contain
references to objects in scoped memory (RTSJ])
objects within a scoped region cannot contain

external references to objects within a non-outer
scoped memory (RTSJ)

Programing with scoped
regions is error-prone

Still an open research
Issue in

m ™

m™
U UL

p—

™\ ™
- = S— e O OO NS D OO0 O O

Besides guaranteeing the functional behavior of a specific
component, the composition must also guarantee that the
communication, synchronization and timing properties of

the components are time-analyzable.

The development RT components which can be run on
different HW platforms is complicate because different
timing characteristics of different platforms.

A RT component should provide the following information:
Memory requirements -
WCET test cases - WCET for a particular processor family.
Dependencies — Describing dependencies on other components

Environment assumptions - in which the component operates, for
example the processor family. :

Design Layer

RT
Architecture %
Domain Component:
Functional @
Architecture

RT System

Specification %

RT System

Architecture Architecturg

Verification
Alloy

Glue-code ;
Q Implementation Layer
- Executables
' Implementation ==
Functional o
Componets e
]T Verification
- Code Annotations

ystem &
Architecture
p (‘ %

System g

Basic goal of the
framework

A systematic architecture design

Automatic generation of RTSJ
code

The ThreadDomain component
represent the RealTimeThread

hierarchy (i.e., RealTimeThread and
NoHeapRealTimeThread)

The MemoryArea component
represent the MemoryArea hierarchy
(i.e., ImmortalMemoryArea, HeapMemory,
and ScopedMemory)

The functional architecture is
obtained as a combination of The
ThreadDomain and MemoryArea
components.

RT-Component RT-Component

INTERRUPTS
HANDLERS
High priority

MACRO-SCHEDULER
Assignment of
time slot

BACKGROUND
COMPUTATIONS
Low priority

MICRO-SCHEDULER

RM, EDF, ...

Dynamic Configuration

Combines OGSi and RTSJ real-
time thread, priority-based
scheduling and real-time GC

Provides:

An admission control protocol.

A priority assignment approach
supporting temporal isolation.
A hierarchical scheduling.

The combination of these
characteristics guarantees

safety update of components

Memory isolation has not been
still addressed

Problems

RTSJ is focused on
centralized —— —————

Since 2000 inactive

Programming model:

networked (asynchronous
messages)

control flow (method
invocation)

data flow(publish/subscribe)

AComponent
Middleware Framework

Components for Distributed
Real-Time Embedded RTSJ

Components connected by ports
that communicate through
strongly-typed objects

Abstracts away RTS] memory
management complexity

Compiler that automatically
generates the scoped memory
architecture for components

- B B B B BN B B A

A Middleware
Framework

It allows to support the level L1
od DRTSJ]

It incorporates some DRTS] L2
elements

It is based on RMI having
influences from RT-CORBA

It offers four services:

A stub/skeleton allowing remote object
invocation

A distributed garbage collector
A naming service for white pages

A synch/event service for data-flow
communication

RMI-HRT Profile (HIJA)

PERC and OSGi

Meeting in Madrid - 22/04/2005 25

OSGi-Enterprise

OSGi-SRT || OSGi-HRT

OSGi Core

